

1.1 Objective

At the end of the unit, students should be able to:

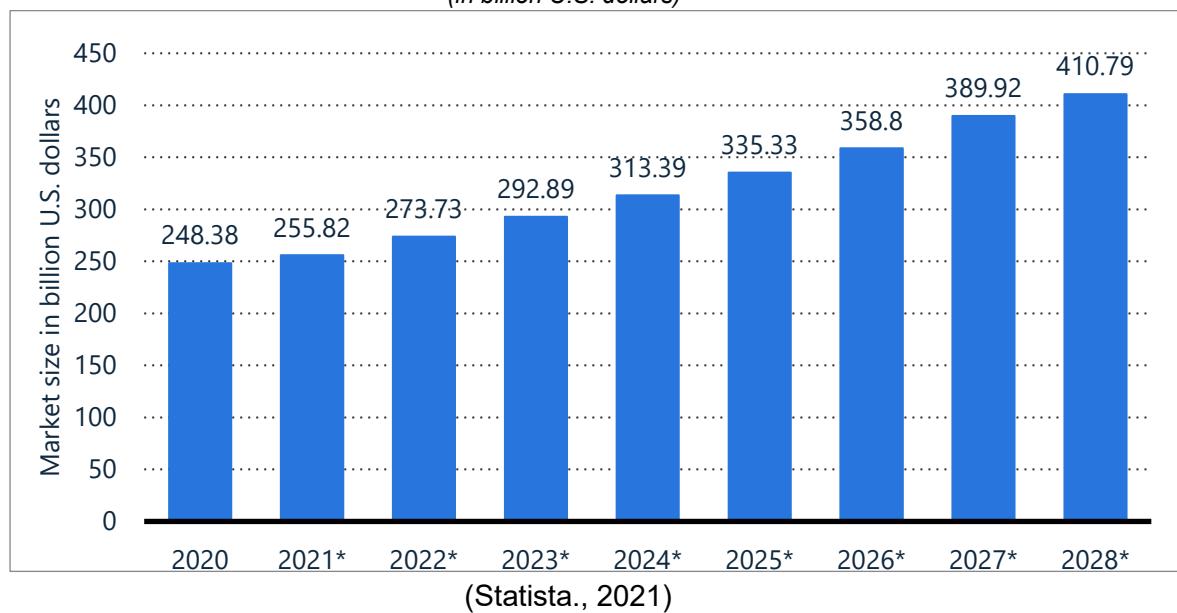
- Identify the difference elements of cold chain logistics.
- State the common terminology used in cold chain logistics.

1.2 Introduction

Cold chain logistics is a specialized branch of supply chain management that focuses on the storage, transportation, and distribution of temperature-sensitive products within a controlled and consistent temperature range. It is essential for maintaining the quality, safety, and efficacy of products such as pharmaceuticals, vaccines, perishable foods, chemicals, and other temperature-sensitive goods.

Cold chain logistics is especially critical for industries such as healthcare, where vaccines and medications must be stored and transported under precise temperature conditions to maintain their potency and effectiveness. Likewise, the food industry relies on cold chain logistics to keep perishable items fresh and safe for consumption. Failure to maintain the cold chain can result in product spoilage, loss of efficacy, and, in some cases, public health risks.

Overall, the effective management of cold chain logistics is essential for ensuring the quality, safety, and reliability of temperature-sensitive products as they move through the supply chain.


1.2.1 Global market size of cold chain logistics 2020-2028

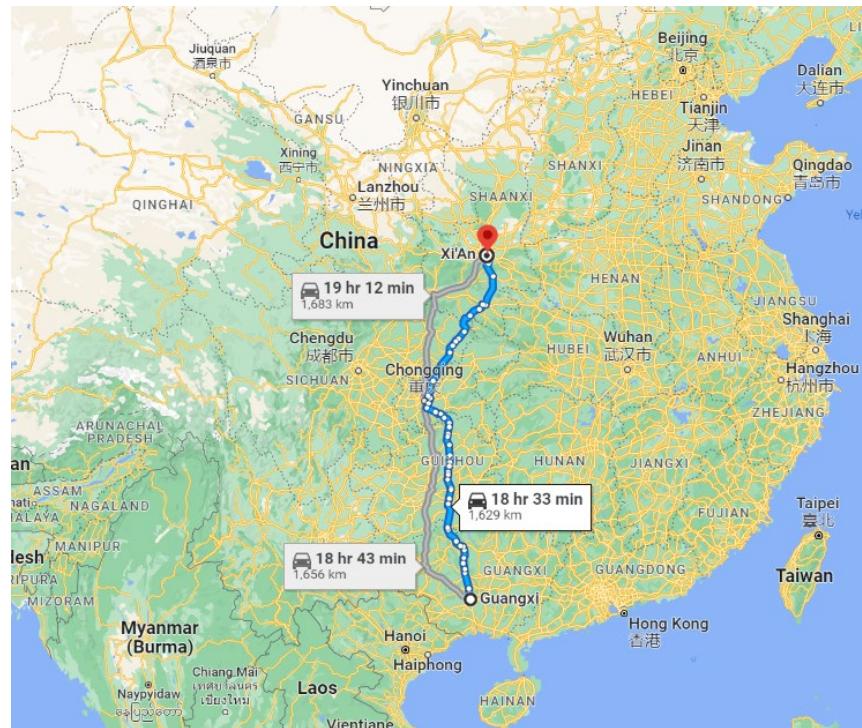
The global cold chain logistics market was worth almost 248.4 billion U.S. dollars in 2020 and is expected to exceed 410 billion U.S. dollars by 2028.

Cold chain logistics involves the transportation of temperature-controlled products along a supply chain using refrigerated packaging solutions to preserve the quality of products such as fresh agricultural goods, seafood, frozen food or pharmaceutical products. (Statista., 2021)

Size of the cold chain logistics market worldwide from 2020 to 2028

(in billion U.S. dollars)

1.2.2 Case study: Cold Chain in Ancient China?


The story of Yang Guifei's desire for fresh lychees is an interesting anecdote in Chinese history, illustrating her favored status in front of Emperor Tang Xuanzong and the logistics capabilities of the time.

Background:

Yang Guifei (Yang Yuhuan) was a beloved concubine of the Tang Dynasty Emperor, Tang Xuanzong. She was deeply cherished by Xuanzong for her beauty and talent.

Story:

It is said that Yang Guifei had a particular fondness for lychees. However, the capital city at that time, Chang'an (modern-day Xi'an), was far from the primary lychee-producing region, Lingnan (current Guangdong and Guangxi). Given the transportation constraints of that era, transporting lychees from Lingnan to Chang'an usually took many days, and by the time they reached Chang'an, the lychees were no longer fresh. To satisfy Yang Guifei's craving, Emperor Tang Xuanzong ordered riders to travel day and night, relaying fresh lychees to Chang'an to ensure that she could enjoy them while they were still fresh. However that is not all that goes into the transportation of the precious goods. The officials, knowing that the lychees would not last, also worked on the packaging for the lychees. They harvested bamboo and used that as packaging. There was also a theory that ice was brought out from the royal ice cellar and consistently topped up to cool the lychees to ensure freshness. (CCTV 纪录, 2022) (乐观探历史, 2023)

(Source: Google Maps, direction from Guangxi to Xi'An, Shaanxi, China)

The story of Yang Guifei's desire for fresh lychees and the subsequent efforts to satisfy her craving offers insights into early cold chain logistics principles, even if not labeled as such at the time. Here are some cold chain principles we can extract from the anecdote:

Speed is Crucial:

One of the primary principles of cold chain logistics is to transport perishable goods as quickly as possible to maintain their freshness. The relay of riders day and night to bring fresh lychees to Yang Guifei echoes this principle.

Dedication to Product Integrity:

Just as modern cold chains prioritize maintaining the quality and freshness of a product throughout its journey, Emperor Tang Xuanzong's efforts were all about ensuring that the lychees arrived in the best possible condition.

Route Optimization:

The use of relay riders suggests a form of route optimization. By swapping out riders or using a relay system, they could ensure continuous and rapid movement, minimizing delays.

Demand-driven Logistics:

The entire logistical effort was driven by specific demand. Today's cold chains are often similarly driven by specific demands, especially for specialized or high-value products.

Resource Allocation:

The story shows a significant allocation of resources (riders, horses, possibly safe stopping points) to ensure the delivery of the lychees. Modern cold chains also require resource allocation, be it in terms of refrigeration, vehicles, or personnel.

Special Handling and packaging for Perishables:

Just as some products in modern cold chains require special handling and packaging due to their perishable nature, the lychees in this story were given special treatment to ensure they remained fresh.

Stakeholder Commitment:

Successful cold chains require commitment from all stakeholders, from those harvesting the products to those transporting and storing them. The story reflects this with the commitment of everyone involved to satisfy Yang Guifei's desire.

While the tale of Yang Guifei and her lychees might not represent a "cold chain" in the modern sense (given there's no mention of temperature-controlled storage or transport), it certainly embodies the spirit and principles of ensuring product freshness through rapid and optimized logistics.

1.2.3 Importance and Application in Daily Life

Cold chain logistics is essential for preserving the quality and safety of perishable products, especially those in the food and pharmaceutical industries. Products such as fresh produce, seafood, frozen food, vaccines, and some chemicals need to be kept at specific temperatures to prevent degradation, maintain efficacy, and ensure consumer safety.

Food Preservation:

Maintaining the freshness and quality of perishable food items. For example, fish transported from its source to markets several miles away would require a cold chain to ensure it remains fresh and safe for consumption.

Medical Supplies:

Ensuring the effectiveness of medicines, especially vaccines. The World Health Organization emphasizes that breaks in the cold chain can render vaccines ineffective, posing health risks to the public.

Example:

The Oral Polio Vaccine contains a live, attenuated (weakened) virus. When not stored at the recommended temperature, there's a risk that the weakened virus in the vaccine can mutate and regain virulence.

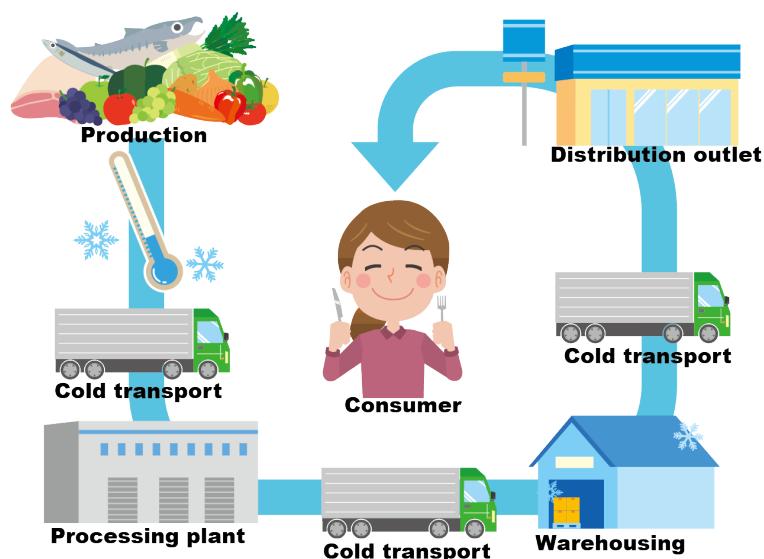
1.2.4 Components of Cold Chain

Cold chain logistics involves several interconnected stages:

Production/ Processing:

Products are manufactured or harvested under specific conditions to ensure quality.

Storage:


Products are stored in temperature-controlled environments like warehouses or cold storage facilities.

Distribution:

Products are transported using refrigerated trucks, ships, or airplanes to various locations.

Handling:

Once at their destination, products are managed using protocols that maintain their integrity until they reach the end consumer.

1.2.5 Key Challenges in Maintaining an Effective Cold Chain

The maintenance of the cold chain is susceptible to various challenges, including equipment malfunctions, human errors, varying external temperatures, transportation delays, and infrastructure issues in certain regions. Some of the challenges can include:

Temperature Excursions:

Ensuring that temperature-sensitive products remain within their specified temperature range during storage, handling, and transport is

critical. Even brief excursions outside this range can compromise the product's integrity.

Infrastructure Limitations:

In many parts of the world, especially in low- and middle-income countries, the necessary cold chain infrastructure is either inadequate or non-existent. This lack of infrastructure includes both physical components (like cold storage facilities) and technological components (like temperature monitoring systems).

Energy Dependence and Supply Issues:

Cold chain equipment, particularly refrigeration units, depends heavily on consistent power sources. In areas with unreliable electricity or frequent outages, maintaining the required temperatures becomes challenging.

Equipment Malfunction:

The breakdown or malfunction of refrigeration equipment, vehicles, or monitoring devices can result in breaches in the cold chain. This risk necessitates regular maintenance, which can be costly and logistically challenging. (Shipsy, n.d.)

Cost Constraints:

Establishing and maintaining a robust cold chain can be expensive. Investments are needed not only in equipment but also in training personnel, implementing monitoring systems, and maintaining infrastructure. (Shipsy, n.d.)

Transportation Challenges:

Transporting temperature-sensitive products across diverse terrains and through different climates poses logistical challenges. Some areas may be hard to reach due to their geographic location, making the delivery of goods while maintaining the cold chain difficult. (Ashvin Ashok, 2016)

Human Errors:

Mistakes made by personnel, such as incorrect temperature settings, failing to monitor temperatures, or not following established protocols, can compromise the cold chain. (Shipsy, n.d.)

Regulatory and Compliance Issues:

Different countries may have varying regulations and standards related to cold chain logistics. Ensuring compliance with these diverse regulations can be complex and challenging.

Technological Challenges:

While there are advanced temperature-monitoring and tracking technologies available, integrating them into the existing cold chain logistics systems can be challenging. Not all regions or companies have access to the latest technologies.

Environmental Concerns:

Refrigeration and transportation equipment can have environmental impacts, including greenhouse gas emissions. There's a growing demand for more sustainable cold chain solutions that reduce these impacts.

1.3 Key elements of the Cold Chain Logistics

Cold chain logistics involves a complex set of processes and components to ensure the safe and controlled storage and transportation of temperature-sensitive products. The key elements of cold chain logistics include:

- **Temperature Control:** The importance of maintaining the proper temperature range cannot be overstated. This entails keeping products within a specified temperature window, whether it is controlled room temperature (15°C to 25°C), frozen (-20°C to -30°C), or even ultra-low temperatures for some specialized products.
- **Temperature Monitoring:** Temperature must be monitored, and, depending on the product, may need to be reported continuously. Temperature sensors, data loggers, and real-time monitoring systems can be utilized throughout the supply chain to track temperature fluctuations and deviations.
- **Packaging:** These can be as simple as an insulated box to protect objects from temperature changes, to specialized packaging like thermal containers, insulated cargo blanket and temperature-controlled refrigeration packaging.
- **Transportation:** Refrigerated trucks, reefer and temperature-controlled air cargo containers are employed to transport temperature-sensitive goods. These vehicles or containers are equipped with refrigeration or heating systems to maintain the desired temperature.
- **Cold Storage:** Temperature-controlled storage facilities, such as refrigerated warehouses, cold rooms, and freezers, are used for storing products before distribution. These facilities are designed to maintain precise temperature conditions.
- **Handling and Loading:** Careful handling and loading procedures are essential to prevent temperature shocks or exposure to adverse conditions during the transfer of products between storage, transport, and distribution points.
- **Quality Assurance:** Stringent quality control measures are in place to ensure that products meet the required quality and safety standards. This includes product testing, inspections, and compliance with industry regulations.

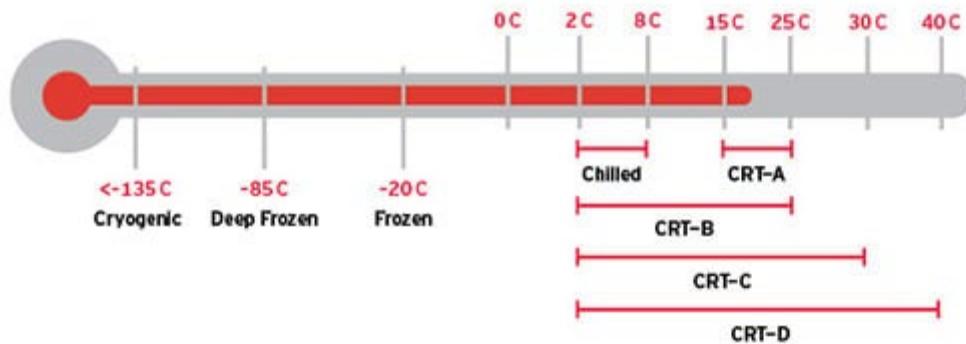
- **Traceability:** Robust documentation and tracking systems are used to trace the movement and handling of products throughout the cold chain. This includes recording temperature data, product details, and handling information.
- **Regulatory Compliance:** Compliance with governmental regulations and industry-specific standards is critical. Different industries and regions have specific guidelines and requirements for cold chain logistics.
- **Emergency Response:** Contingency plans and emergency response procedures are in place to address unforeseen events, such as power outages, equipment failures, accidents or temperature excursions. These plans aim to minimize the impact on product integrity.
- **Training and Education:** Personnel involved in cold chain logistics receive training in best practices, safety protocols, and the handling of temperature-sensitive products.
- **Documentation:** Comprehensive record-keeping is essential for traceability and compliance. This includes temperature logs, shipping documents, certificates of compliance, and product-specific data.
- **Cold Chain Management Software:** Advanced software and information systems are used for data collection, analysis, and reporting. These systems provide real-time visibility into temperature conditions and help automate monitoring and control processes.
- **Risk Assessment:** Cold chain operators conduct risk assessments to identify potential hazards and vulnerabilities within the supply chain. This allows for proactive risk mitigation measures.
- **Supplier and Partner Collaboration:** Collaboration with suppliers, carriers, and logistics partners is crucial to ensure that all parties understand and adhere to cold chain requirements.

At each stage of the supply chain, cold chain logistics management requires careful planning, coordination, and adherence to best practices. When the cold chain isn't kept up, products might decay, lose their effectiveness, and in some situations, pose a risk to the public's health. The effectiveness of cold chain logistics depends on rigorous adherence to these important components

1.4 Terminologies commonly used in Cold Chain Logistics

Cold chain logistics involves several specific terminologies and concepts that are essential to understand when working in this field. Here are some common terminologies used in cold chain logistics:

- **Cold Chain:** The entire process and infrastructure involved in maintaining the required temperature conditions for temperature-sensitive products throughout the supply chain.
- **Cold Storage:** Temperature-controlled facilities, such as refrigerated warehouses and cold rooms, designed for storing products within a specified temperature range.
- **Compliance:** Adherence to regulatory requirements and industry standards related to temperature control and product quality in the cold chain.
- **Data Logger:** Electronic devices used to record and store temperature and environmental data during transportation and storage. Data loggers provide a record of temperature conditions.
- **Dry Ice:** Solid carbon dioxide (CO₂) used for maintaining very low temperatures during transportation, especially for products that require deep freezing.
- **Frozen Chain:** The portion of the cold chain that specifically deals with maintaining products at freezing or sub-zero temperatures.
- **GMP (Good Manufacturing Practices):** Industry-specific quality control and management practices that ensure the consistent production of safe and high-quality products, including pharmaceuticals and food.
- **GDPMDS (Good Distribution Practice for Medical Devices):** It is a set of guidelines and quality assurance standards for the distribution of medical devices to ensure their quality, safety, and effectiveness throughout the supply chain. GDPMDS is similar in concept to Good Distribution Practices (GDP) but is specifically tailored to the medical device industry.
- **HACCP (Hazard Analysis and Critical Control Points):** A systematic approach to identifying and controlling food safety hazards in the cold chain. While it was initially developed for the food industry, primarily in food manufacturing and processing, HACCP principles have been adopted and adapted by various industries to manage and mitigate risks associated with their specific processes.
- **Perishable Goods:** Products that have a limited shelf life and are susceptible to spoilage or degradation without proper temperature control.
- **Quality Assurance:** Measures and processes to ensure that temperature-sensitive products meet the required quality and safety standards.
- **Real-Time Monitoring:** Continuous, live tracking of temperature and environmental conditions during transportation or storage, often using wireless sensors and software.
- **Refrigerated Transport:** Vehicles, such as refrigerated trucks and containers, equipped with cooling or heating systems to transport temperature-sensitive goods.


- **Temperature Excursion:** A temporary deviation from the specified temperature range. Excursions can be minor or major and can impact product quality.
- **Temperature Monitoring:** Continuous tracking and recording of temperature conditions during storage and transportation to ensure compliance with temperature requirements.
- **Temperature Range:** The specific range of temperatures within which a product must be stored or transported to ensure its integrity. This varies depending on the product.
- **Temperature-Sensitive Products:** Goods or substances that require specific temperature conditions to maintain their quality, safety, and efficacy. Examples include vaccines, pharmaceuticals, fresh produce, and frozen foods.
- **Thermal Packaging:** Specialized packaging materials and containers designed to insulate and protect temperature-sensitive products from temperature fluctuations.
- **Traceability:** The ability to track and trace the movement and handling of products throughout the cold chain, ensuring transparency and accountability.
- **Ultra-Low Temperature:** Extremely cold storage conditions, often below -70°C, required for certain medical and scientific products.

Understanding these terminologies is crucial for effectively managing temperature-sensitive products and ensuring the success and safety of cold chain logistics operations.

1.5 Temperature Standards for Cold Chain Logistics

Temperature-controlled transport is generally categorized into the following temperature ranges:

- Deep freeze (-28 °C to -30 °C) — seafood, meat exports.
- Frozen (-16 °C to -20 °C) — meat, certain types of produce.
- Chill (2 °C to 4 °C) — fruit & vegetables, fresh meat, certain dairy products.
- Pharma (2 °C to 8 °C) — medicines, vaccines.
- Cool-chain (12 °C to 14 °C) — fresh produce, processed food, over-the-counter drugs.

*CRT: Controlled Room Temperature

(Steedman, 2022)

The temperature above may seem straight forward, however, things are never simple in the life of a logistician.

1.5.1 Regulatory Definitions for "Ambient", "Room Temperature" and "Cold Chain"

Labels with storage requirements such as "ambient", "room temperature", and "cold chain" are frequently found on the exterior packaging of medicinal items. This leads to two questions:

- 1) What precisely do they mean?
- 2) Do these conditions apply during transportation as well?

Question 2 is easily answered. According to the PIC/S Good Distribution Guide these conditions should also be applied for transportation. (PHARMACEUTICAL INSPECTION CONVENTION, 2014)

However, question 1 maybe more difficult to answer. Refer to the table below.

	European Pharmacopoeia	WHO	US Pharmacopoeia	Japan Pharmacopoeia
Frozen/Deep freeze	>-15°C	-20°C	-	-
Refrigerator	2°C - 8°C	-	-	-
Cold	8°C - 15°C	2°C - 8°C	>-8°C	1°C - 15°C
Cool	8°C - 15°C	8°C - 15°C	8°C - 15°C	-
Room temperature	15°C - 25°C	15°C - 25°C	Temperature prevailing in a work area	1°C - 30°C
Controlled room temperature	-	-	20°C - 25°C. Excursions between 15°C and 30°C are allowed	-
Ambient temperature	-	15°C - 25°C or 30°C depending on climatic conditions	-	-

The bottom-line is that terms like "ambient", "room temperature" and "cold chain" should be avoided as the only labelling for storage or transport boxes and containers because they are not always clear and might have different meanings in other parts of the world. **Storage conditions are always better explicitly specified in terms of a defined temperature range** (e.g., 15°C -25°C or +2°C to +8°C).

(gmp-compliance.org, 2017)

1.6 Different types of 3PL Cold Chain Logistics Providers

There are different types of third-party logistics (3PL) cold chain service providers, including transportation-based, warehouse-based, and integrated service providers.

Transportation-based service providers specialize in the transportation of temperature-sensitive goods and typically offer services such as refrigerated trucking, air cargo, and ocean freight. Examples of transportation-based 3PLs include FedEx Custom Critical and UPS Temperature True.

Warehouse-based service providers specialize in the storage and handling of temperature-sensitive goods and typically offer services such as cold storage warehousing, order fulfillment, and inventory management. Examples of warehouse-based 3PLs include Americold and Lineage Logistics.

Integrated service providers offer end-to-end cold chain logistics solutions that combine both transportation and warehousing services. Examples of integrated 3PLs include DHL Global Forwarding and Kuehne + Nagel.

1.7 Different types of Temperature-sensitive Products

Temperature-sensitive products in cold chain logistics encompass a wide range of products across various industries. Here are some types of temperature-sensitive goods, along with points to consider for each type. (Specific requirements may vary by product, region, and regulations)

Pharmaceuticals and Vaccines:

- Proper vaccine storage and handling play critical roles in efforts to prevent vaccine-preventable diseases.
- An effective vaccine cold chain is a temperature-controlled supply chain that includes all vaccine-related equipment and procedures from the time they are manufactured until they are administered.
- The cold chain begins with the cold storage unit at the manufacturing plant, extends to the transport and delivery of the vaccine and correct storage at the provider facility, and ends with administration of the vaccine to the patient.
- Vaccines must be stored properly from the time they are manufactured until they are administered. Potency is reduced every time a vaccine is exposed to an improper condition.
- Exposure to any inappropriate conditions can affect potency of any refrigerated vaccine, but a single exposure to freezing temperatures (0° C or colder) can actually destroy potency. Liquid vaccines containing an adjuvant can permanently lose potency when exposed to freezing temperatures.
- Soft-sided containers specifically engineered for vaccine transport are acceptable, however, commercially available soft-sided food or beverage coolers should not be used because most are poorly insulated and likely to be affected by room or outdoor temperatures.

Source: CDC Vaccine Storage and Handling Toolkit

Fresh Produce and Perishable Foods:

- Control temperature and humidity to prevent spoilage and bacterial growth.
- Minimize temperature fluctuations during transportation.
- Monitor and maintain proper storage conditions.

Source: USDA Food Safety and Inspection Service

Frozen Foods:

- Maintain sub-zero temperatures to prevent thawing.
- Prevent freezer burn and ice crystal formation.
- Monitor and control temperature during storage and transportation.

Source: FDA Guidance for Industry

Dairy Products:

- Maintain refrigerated temperatures (typically 0°C to 4°C) to prevent spoilage.
- Prevent exposure to direct sunlight, which can affect flavor and quality.
- Use first-in, first-out (FIFO) inventory management to minimize product expiration.

Source: European Commission - Dairy Products

Seafood:

- Keep seafood cold and well-ventilated to prevent spoilage and bacterial growth.
- Use proper packaging and insulation during transportation to maintain freshness.
- Adhere to strict hygiene and safety standards to prevent contamination.

Source: US FDA Fish and Fisheries Products Hazards & Controls Guidance

Chemicals and Pharmaceuticals (Non-Biological):

- Follow temperature storage requirements specified on product labels.
- Prevent exposure to extreme temperatures, as some chemicals may be reactive.
- Ensure proper ventilation and handling procedures for safety.

Source: Specific chemical and pharmaceutical manufacturers' guidelines.

Biological Samples and Specimens:

- Use ultra-low temperature storage for extremely sensitive materials.
- Maintain strict traceability and inventory control.
- Implement backup power and alarm systems to prevent temperature excursions.

Source: ISBER Best Practices

Chocolate and Confectionery:

- Maintain temperatures to prevent melting and flavour degradation.
- Protect from humidity and temperature fluctuations during storage and transportation.
- Use proper packaging to avoid heat exposure.

Source: International Cocoa Organization

Floral Products (Cut Flowers and Plants):

- Keep flowers and plants at the appropriate temperature and humidity to extend shelf life.
- Use temperature-controlled transportation to prevent wilting and damage.
- Handle with care to avoid physical damage during handling and shipping.

Source: International Association of Horticultural Producers (AIPH)

Wine and Beverages:

- Maintain consistent temperatures for wine aging and storage.
- Prevent temperature fluctuations and exposure to light to preserve wine quality.
- Protect against oxidation and spoilage during transportation.

Source: Wine Spectator's Wine Storage Guidelines

Each type of temperature-sensitive goods requires specific attention to temperature control, storage conditions, packaging, and handling practices to ensure product quality, safety, and compliance with industry standards and regulations. Always refer to relevant industry guidelines and product-specific requirements for the most accurate information.

1.8 Value added services

Some of the typical value-added services (VAS) activities that may be conducted include:

Temperature monitoring:

- Regular monitoring of the temperature and humidity levels within the warehouse to ensure that they are within the required range.

Repackaging and relabeling:

- Products may need to be repackaged or relabeled to comply with specific regulations or customer requirements.

Quality control:

- Inspection of products to ensure that they meet the required quality standards.

Order processing:

- Picking and packing of orders for shipment to customers.

Inventory management:

- Keeping track of stock levels and ensuring that products are stored in the correct locations within the warehouse.

Cross-docking:

- Transferring products directly from one vehicle to another without storing them in the warehouse.

Kitting and assembly:

- Combining multiple products into a single kit or assembly.

These are just a few examples of the VAS activities that may be conducted in a cold chain warehouse. The specific activities will depend on the needs of the customers and the types of products being stored and shipped.

1.9 Safety in a Cold Chain Warehouse

Working in a cold storage warehouse environment comes with its own unique set of safety concerns. It's essential to understand the potential risks and best practices to keep you, the equipment and products safe while safeguarding productivity.

According to global commercial real estate firm CBRE, even as there was increased demand for freezer and cold storage warehouse space through the COVID19 period. These facilities had already seen a capacity growth of tremendously. As of Q2 2022, there was 3.3 million sq. ft. of speculative cold storage development underway in the U.S., up from only 300,000 sq. ft. in 2019. (CBRE, 2022)

Projections continue to show strong demand into 2025 as buyers purchase more perishable food and grocers and producers shift resources to meet demand. In a rush to satisfy customer expectations, we must be diligent in the safe implementation and operation of these critical facilities.

1.9.1 Safety matters in a cold storage warehouse

Proper attire:

In any high-risk workplace, including cold storage, appropriate gear is essential. Ensure that your staff members are outfitted with appropriate insulated and slip-proof footwear, layered clothes, cold-weather gloves, and jackets.

Cleaning and maintenance:

Maintain dry flooring and routinely inspect your facilities for ice buildup in exposed areas. Make sure all work areas are accessible, dry, and free of clutter.

- Spilled liquids can be a hazard as it have a chance of freezing and posing a slipping hazard.
- Ice buildup can be particularly troublesome on ceilings, floors, and storage racks. It is possible to reduce this by using air curtains or freezer curtains to prevent humid air from getting into the freezer.

Proper training:

All employees should be trained on key safety aspects of cold-storage warehouse operation. The training should include:

- How to spot condensation and ice build-up
- Cleaning and maintenance of key areas like battery and refrigerant stations
- Functions of the machinery operated.
- Identification of early signs of hypothermia, e.g. extreme drowsiness, loss of balance, excessive shivering or slower-than-normal breathing.

Limit Exposure:

It is important to ensure that operators should not be spending prolonged period of time in freezing or subzero temperatures.

(OSHA, n.d.) (8 STEPS TO KEEP YOUR COLD STORAGE WAREHOUSE & EMPLOYEES SAFE, n.d.)

1.10 References

8 STEPS TO KEEP YOUR COLD STORAGE WAREHOUSE & EMPLOYEES SAFE

(n.d.). Retrieved from APEX Warehouse Systems: <https://www.apexwarehousesystems.com/8-steps-to-keep-your-cold-storage-warehouse-employees-safe/#:~:text=Proper%20attire%20is%20vital%20in,other%20essential%20low%20temperature%20garments>.

Ashvin Ashok, M. B. (2016). Improving cold chain systems: Challenges and solutions. *Elsevier*, 2.

CBRE. (27 Jun, 2022). *Cold Storage Demand Grows Amid Tailwinds*. Retrieved from CBRE: <https://www.cbre.com/insights/viewpoints/cold-storage-demand-grows-amid-tailwinds>

gmp-compliance.org. (2 Mar, 2017). *what-are-the-regulatory-definitions-for-ambient-room-temperature-and-cold-chain*. Retrieved from gmp-compliance.org: <https://www.gmp-compliance.org/gmp-news/what-are-the-regulatory-definitions-for-ambient-room-temperature-and-cold-chain>

OSHA. (n.d.). *Winter Weather*. Retrieved from OSHA: <https://www.osha.gov/winter-weather>

PHARMACEUTICAL INSPECTION CONVENTION. (2014). Transportation. In PIC/S, *PIC/S GUIDE TO GOOD DISTRIBUTION PRACTICE FOR MEDICINAL PRODUCTS* (p. 22).

Shipsy. (n.d.). *5 Challenges in Cold Chain Logistics Management*. Retrieved from Shipsy: <https://shipsy.io/blogs/5-challenges-in-cold-chain-logistics-management/>

Statista. (20 October, 2021). *Size of the cold chain logistics market worldwide from 2020 to 2028 (in billion U.S. dollars)* . Retrieved from Statista: <https://www.statista.com/statistics/1107947/cold-chain-logistics-market-size-worldwide/>

Steedman, M. (10 Aug, 2022). *Temperature Standards for Cold Chain Logistics*. Retrieved from Cargo-wise: <https://www.cargo-wise.co.uk/blog/temperature-standards-for-cold-chain-logistics#:~:text=The%20term%20E2%80%9Ccold%20chain%E2%80%9D%20for,as%20%E2%88%92150%C2%B0C.>

2.1 Objective

- Understand the Role and Importance of Cold Chain Facilities
- Identify the Different Types of Cold Chain Facilities
- Comprehend the Key Infrastructure Components
- Acknowledge the Importance of Energy Efficiency & Sustainability
- Develop an Appreciation for Compliance and Standards
- Analyze Real-world Examples and Case Studies

2.1 Cold Chain Facility

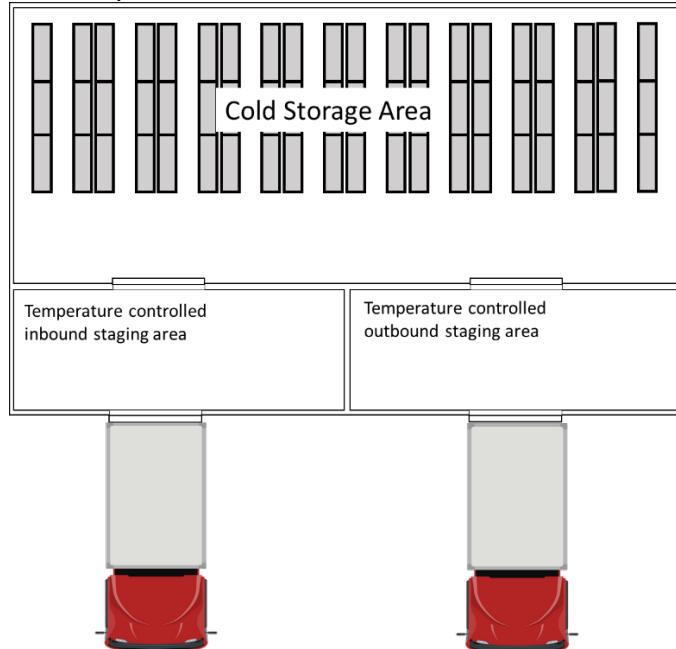
A cold chain facility is an integrated set of storage and transportation solutions designed to maintain the temperature integrity of products from the point of manufacture to the point of consumption. This ensures the safety, efficacy, and quality of temperature-sensitive goods.

2.1.1 Types of Cold Chain Facilities

- a. Cold Storage Warehouses: Large-scale storage facilities often used by manufacturers, wholesalers, or distributors. They have vast space and can cater to varying temperature needs.

It is important to note that not all warehouses will be designed with the same consideration. However, typical warehouse that is built for cold chain logistics may have the following features.

- Sheltered docking with sealing curtains or pads.


Docking bay for cold chain warehouse

- Dock leveler.

Sheltered dock with dock leveler.

- Temperature controlled in/outbound area

Sample layout of cold chain warehouse.

- b. Cool Rooms or Smaller storage facilities usually located in urban areas for quick access and short-term storage.

Walk-in cold room

2.2 Pull down load

"Pull down load" or "pull down capacity" refers to the ability of a refrigeration system to reduce the temperature of a product or space from its initial, higher temperature to a desired, lower temperature within a specified period. It's a term often used in cold storage and refrigeration industries. (Bryan, 2020)

When assessing a refrigeration system for cold storage facilities, especially for temperature-sensitive goods like food or pharmaceuticals, it's not just enough to maintain a steady temperature. Sometimes, products come in at higher temperatures and need to be cooled down rapidly to a desired storage temperature. This rapid cooling is where the pull down load or capacity becomes essential.

Example 1

If a batch of fresh produce is harvested and transported to a cold storage facility, it might arrive at a temperature much higher than its ideal storage temperature. The refrigeration system must then "pull down" this temperature rapidly to ensure the produce's freshness and safety.

Example 2

If a batch of pharmaceutical is to be transported at a temperature range between 15°C - 25°C needs to cooled down to the correct temperature range before loading to the reefer container or refrigerated truck as these are typically designed to keep the temperature rather than cooling down the products, thus having a low "pull down" capacity.

Several factors can influence the pull down capacity:

a. Volume of the Product:

A larger volume of product will generally require a longer time to cool down.

b. Nature of the Product:

Some products, due to their composition, might take longer to cool down. For example, meat might have a different pull down rate compared to leafy vegetables.

c. Initial Temperature:

The starting temperature of the product upon arrival at the facility.

d. Desired Temperature:

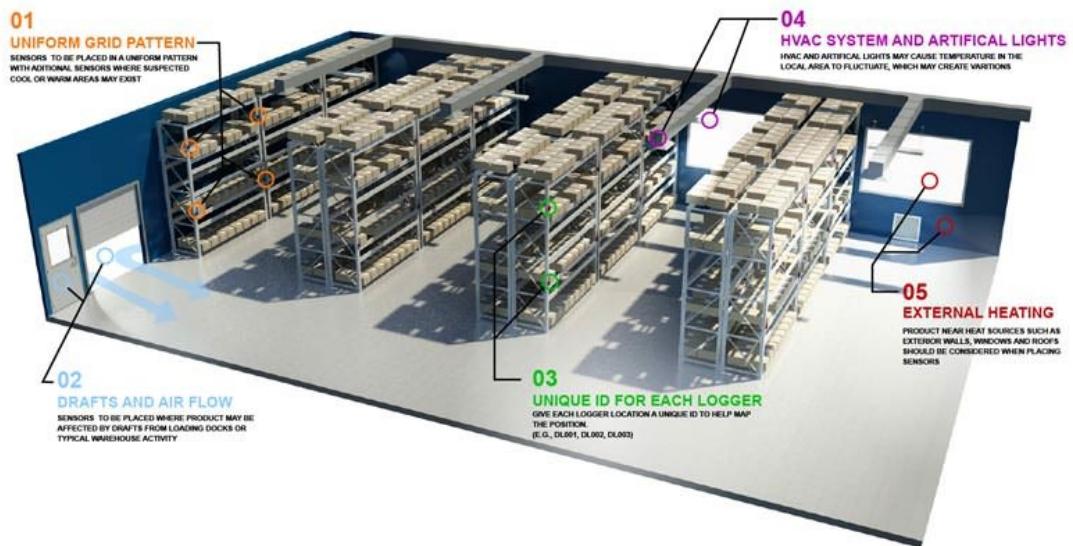
The target temperature that needs to be achieved.

e. Efficiency and Capacity of the Refrigeration System:

Higher capacity systems can pull down temperatures more rapidly.

f. Ambient Conditions:

External temperatures can influence the efficiency of the refrigeration system.


Understanding the pull down load is crucial in designing and operating effective cold storage facilities, especially when handling products that degrade quickly at higher temperatures.

Question:

Why not increase the pull down load for all the storage and transportation if it is so crucial?

2.3 Temperature mapping

Temperature mapping is a process used to analyze and document the temperature distribution within a specific space. This is done by recording temperature over a determined period and creating a detailed map that displays temperature variations in that area. Temperature mapping is vital in industries where the maintenance of specific temperature ranges is crucial, such as pharmaceuticals, biotech, and food storage.

Source: <https://www.pharmout.net/understanding-temperature-mapping/> (PharmOut, 2022)

The following risks should be considered as part of the mapping plan:

- Goods stored close to the loading dock may be affected by drafts
- Lights can be a source of heat. Goods placed on high racking in close proximity to a light may be at risk

- Goods movement and other activity in the more trafficable areas of the warehouse is likely to cause drafts.
- Goods stored on tall racking is likely to have a wide temperature variation from top to bottom.

These identified vulnerable areas should have additional sensors placed to gain a better mapping of hot and cold spots. Other risks to consider include total volume of space, air circulation, layout of shelves and racks, HVAC capacities, outside air temperature and humidity, etc.

Temperature mapping is of paramount importance in industries where even slight deviations from the required temperature range can have significant implications. Here are the key reasons why temperature mapping is essential:

a. Ensuring Product Quality and Safety:

- Sensitivity to Temperature:
Many products, especially pharmaceuticals, biologics, and certain foods, are sensitive to temperature. They can degrade or become unsafe if not stored within specific temperature ranges.
- Consistent Conditions:
Temperature mapping ensures that every part of a storage facility maintains consistent conditions, preventing "hot" or "cold" spots that might compromise product quality.

b. Regulatory and Compliance Requirements:

- Mandates from Regulatory Bodies:
Organizations like the World Health Organization (WHO), the U.S. Food and Drug Administration (FDA), and the European Medicines Agency (EMA) have guidelines or requirements regarding the storage of temperature-sensitive products. Temperature mapping provides evidence that these guidelines are being met.
- Audit and Inspection Readiness:
Detailed mapping records and reports ensure that a facility is always prepared for audits or inspections, showcasing adherence to best practices and regulations.

c. Risk Mitigation:

- **Avoiding Financial Losses:**
Compromised products due to temperature fluctuations can lead to substantial financial losses, both from the loss of the product itself and potential recalls.
- **Protecting Brand Reputation:**
Product recalls or safety issues can harm a company's reputation. Ensuring consistent temperature control helps avoid such scenarios.

d. Operational Efficiency:

- **Optimizing Equipment Placement:**
Through temperature mapping, organizations can determine the most efficient locations for HVAC systems, fans, and other equipment to ensure even temperature distribution.
- **Energy Savings:**
By identifying and rectifying areas of temperature inefficiency, organizations can reduce energy consumption, leading to cost savings.

e. Informed Decision Making:

- **Data-Driven Adjustments:**
If temperature inconsistencies are found during mapping, organizations can make informed decisions on adjustments, whether it's relocating products, adjusting equipment, or revising protocols.
- **Future Planning:**
Temperature mapping results can be used for future planning, guiding the design and layout of new facilities or the expansion of existing ones.

f. Ensuring Integrity During Transportation:

- **End-to-End Cold Chain Management:**
Beyond storage, temperature mapping of transport vehicles ensures that products maintain their integrity during transit, especially over long distances or through varied climatic zones.

In essence, temperature mapping is a proactive measure. It provides tangible data on the efficiency and efficacy of temperature-controlled environments, ensuring that

products remain safe, effective, and of high quality from the point of manufacture to the point of consumption.

2.4 Active, passive and hybrid

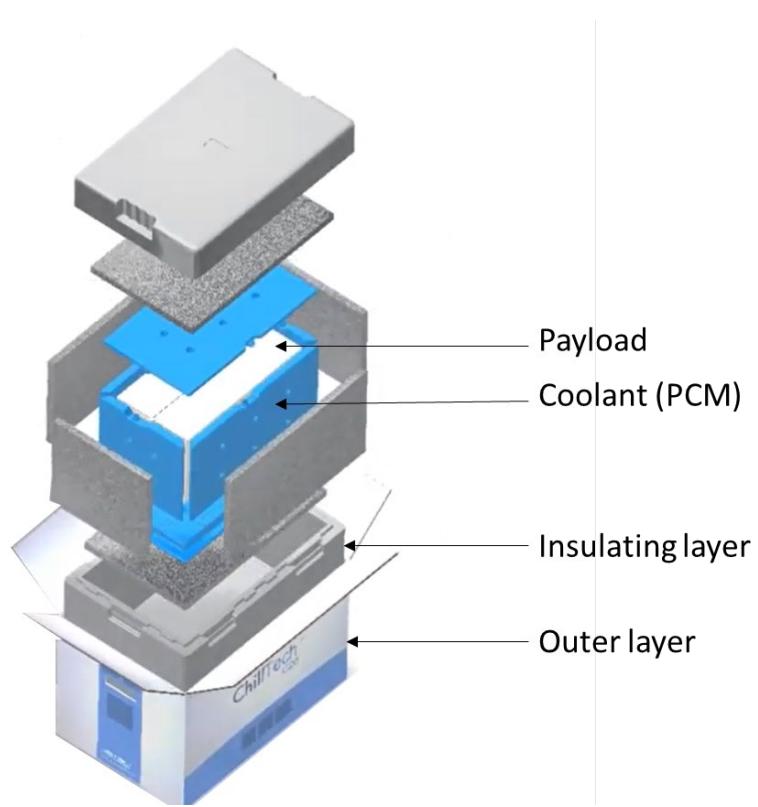
Active, passive, and hybrid packaging solutions are three distinct approaches to temperature control in cold chain logistics. Understanding the differences between these options is critical for choosing the most appropriate temperature management strategy for specific products.

2.5 Cold Chain Packaging

Cold chain packaging is a critical component of the cold chain logistics process. It ensures that temperature-sensitive products such as pharmaceuticals, food, and chemicals remain within a specified temperature range during transport. We will delve into the various types of cold chain packaging, their respective temperature ranges, and the advantages and disadvantages.

a. Insulated Shippers

Temperature Range: Typically -20°C to 8°C


Insulated shippers, often referred to as thermal packaging or insulated boxes, are designed to offer temperature protection for sensitive products during transport. They are critical in ensuring that products maintain their integrity, quality, and safety throughout the shipping process.

An insulated shipper is typically constructed with an outer protective layer, a thick insulating middle layer, and an inner lining.

Outer Layer: Provides structural support and shields the contents from physical damage. It can be made from corrugated cardboard, plastic, or other durable materials.

Insulating Layer: The heart of the shipper, made from materials like expanded polystyrene (EPS), polyurethane foam, or other insulating materials. It provides thermal resistance to external temperature fluctuations.

Inner Lining: Usually made of a reflective foil or barrier film, this helps retain the internal temperature and offers added protection against moisture and other contaminants.

Typical insulated shipper.

Source: <https://www.youtube.com/watch?v=Ffr06Frw4nE&ab>

Types of insulating materials includes:

Expanded Polystyrene (EPS): A lightweight, rigid foam offering good thermal resistance. It's recyclable and cost-effective.

Polyurethane Foam: Offers better insulating properties than EPS and is often used for longer shipping durations.

Eco-friendly Materials: With sustainability concerns rising, materials like biodegradable foam are being explored as green alternatives.

Applications

Insulated shippers are versatile and are used across various industries:

Pharmaceuticals: To transport medications, vaccines, and biological samples.

Food and Beverages: For shipping perishables like meat, seafood, dairy, chocolates and prepared meals.

Specialty Chemicals: For transporting temperature-sensitive chemicals like **acetic acid**, cumene, phenol, propionic acid, etc.

If these chemicals are released into a high temperature environment a chemical fire is likely to happen. (Safety Storage Systems, n.d.)

To enhance their performance, insulated shippers are often used in conjunction with coolants like Gel Packs, Dry Ice and Phase Change Materials (PCMs)

Pros:

- Versatile and can be used with a variety of refrigerants.
- Lightweight and often cost-effective.
- Widely available in various sizes and insulation materials.

Cons:

- Limited thermal protection, especially in extreme conditions or prolonged shipping durations.
- There are environmental concerns as some insulating materials are not biodegradable.

Sustainability and Future Trends

There's a growing emphasis on sustainability in packaging. Many companies are researching alternative materials that are biodegradable or derived from renewable sources. Moreover, innovations like reusable insulated shippers are gaining traction, further reducing the carbon footprint.

b. Gel Packs and Phase Change Materials (PCMs)

Gel packs and Phase Change Materials (PCMs) work in tandem with the insulated shippers to control the temperature.

Temperature Range for these solutions are dependent on the specific formulation, but commonly 2°C to 8°C, -20°C, -40°C, etc.

Gel packs:

Commonly known as ice packs or cold packs, are sealed plastic pouches filled with a refrigerant gel or liquid. They are frozen before use and then added to shipping containers to maintain a cool temperature.

The gel inside these packs is usually a mix of water, a refrigerant agent, and a thickening agent. Some gels contain non-toxic, food-grade materials, making them safe for food shipments.

Pros:

Consistent Cooling: Offers a consistent temperature range over moderate durations.

Flexibility: Available in various sizes and can be shaped to fit around products.

Reusable: Can be refrozen and reused multiple times.

Non-toxic: Many are safe to use with food items.

Cons:

Melting Point: Gel packs have a specific melting point and might not be suitable for ultra-cold shipping needs.

Weight: Can add significant weight to shipments, affecting shipping costs.

Phase Change Materials (PCMs):

PCMs are substances that absorb or release thermal energy during phase transitions, like moving from solid to liquid or vice versa. They provide precise temperature control by maintaining a nearly constant temperature during the phase change process.

Types

- Organic PCMs: Compounds like paraffins or fatty acids. They have a consistent melting point and are chemically stable.
- Inorganic PCMs: Materials such as salt hydrates. They offer a higher heat of fusion than organics but can have issues like phase separation.
- Bio-based PCMs: Derived from natural sources, these are becoming popular due to environmental benefits.

Pros:

- Precise Temperature Control: PCMs can maintain a specific temperature range over extended periods.
- Versatility: Different PCMs can be engineered for various temperature ranges, from ultra-cold to ambient.
- Reusable: Can be conditioned and reused multiple times.
- Lightweight: Often lighter than traditional coolants, reducing shipping costs.

Cons:

- Cost: Generally more expensive than traditional coolants like gel packs.
- Pre-conditioning: PCMs need specific conditioning (melting or freezing) before use, which can be time-consuming.

Application:

Both gel packs and PCMs find applications in:

- Pharmaceuticals:
For shipping medications, samples, and vaccines.
- Food and Beverages:
Maintaining freshness in perishable items.
- Biotechnology:
Shipping biological samples or cultures.

While gel packs offer a reliable and flexible solution for many cold chain needs, **PCMs are the go-to option for situations demanding precise temperature control.** As cold chain logistics continues to evolve, these technologies will play a crucial role in ensuring that temperature-sensitive products reach their destinations intact and safe.

c. Eutectic plates:

Eutectic plates, sometimes referred to as "cold plates" or "freeze plates," are crucial components in the cold chain industry. With a unique mechanism to maintain specific temperature ranges, they offer an effective solution for transporting temperature-sensitive goods. This section provides an in-depth exploration of eutectic plates, their functioning, and their applications.

Eutectic plates are rigid panels that contain a eutectic solution, which is a mixture of substances that changes phase (e.g., from liquid to solid) at a specific temperature. This phase change helps in maintaining a consistent temperature within the storage compartment.

The eutectic solution inside the plate freezes (or melts) at a predetermined temperature. When the plate is cooled or frozen, it stores energy. During transportation, this stored energy is gradually released in the form of cold, maintaining the desired temperature inside the compartment even without an external power source.

The eutectic solution typically consists of water and a specific salt or a blend of salts. The particular composition determines the freezing/melting point, ensuring that the desired temperature is maintained consistently.

Temperature Range: Various, depending on the eutectic solution used.

Pros:

Offers consistent temperature maintenance over long durations. Can be reused multiple times, making them cost-effective in the long run.

Cons:

Plates are heavy, adding to transportation costs.
Requires specific freezing equipment.

Application:

Pharmaceuticals: Ensuring medications and vaccines remain within a strict temperature range.

Food Industry: Transporting dairy products, meats, seafood, and other perishables.

Ice Cream Vendors: Mobile vendors often use them to keep ice cream frozen without needing a power source.

Medical Labs: For transporting biological samples, organs, or any material that requires consistent temperature control.

Conclusion

Eutectic plates stand out in the cold chain industry due to their ability to maintain precise temperature ranges over extended periods. Their durable construction and energy efficiency make them an excellent choice for various applications, especially when consistency and reliability are paramount. As with any technology, understanding their strengths and limitations is essential to harness their full potential effectively.

Difference between PCMs and Eutectic plates:

While both PCMs and Eutectic Plates are used for thermal regulation, they differ in material composition, form factor, and versatility. PCMs offer greater flexibility in temperature control and form factor, while eutectic plates are generally rigid and optimized for specific, stable temperature ranges. Both have their merits and optimal use-cases based on the application's specific needs.

PCM	Eutectic Plates
PCMs leverage the latent heat associated with the phase change (solid-to-liquid, liquid-to-gas, etc.) to store or release energy.	Eutectic plates consist of a eutectic solution sealed within a metal or plastic plate.
PCMs store and release thermal energy during the process of melting and freezing. They change phases at a predetermined temperature.	Eutectic plates also store energy through a phase change, but their composition is generally optimized for a specific freezing/melting point.
Various types of PCMs work at different temperature ranges, making them more customizable for specific applications.	Eutectic plates are generally designed for specific temperature ranges, and they maintain that temperature effectively but are less versatile than PCMs.
PCMs are commonly used in medical transportation, building materials for passive cooling or heating, and thermal regulation in electronic devices.	Eutectic plates are commonly used in refrigerated trucks and containers for transporting perishable goods like food and pharmaceuticals.

d. Vacuum Insulated Panels (VIPs)

VIPs consist of a rigid, highly porous core (often made from materials like fumed silica, aerogel, or fiberglass) enclosed in a metalized film. The air within the panel is removed, creating a vacuum, which significantly reduces the panel's ability to conduct heat.

How It Works:

Heat transfer occurs in three primary ways: conduction, convection, and radiation. The vacuum inside the panel effectively eliminates convection, and the metallic film and core material minimize conduction and radiation. This combination results in a material with a very low thermal conductivity, making it highly insulative.

Pros:

- **High Thermal Performance:** Due to their construction and vacuum nature, VIPs provide much higher insulation value (R-value) than traditional insulation materials of the same thickness. This makes them especially useful in applications where space is limited.
- **Space-saving:** VIPs are thin, allowing for more internal space in packaging or appliances while maintaining or even improving thermal performance.
- **Lightweight:** VIPs are generally lightweight, which can be beneficial for transportation and handling.

Cons:

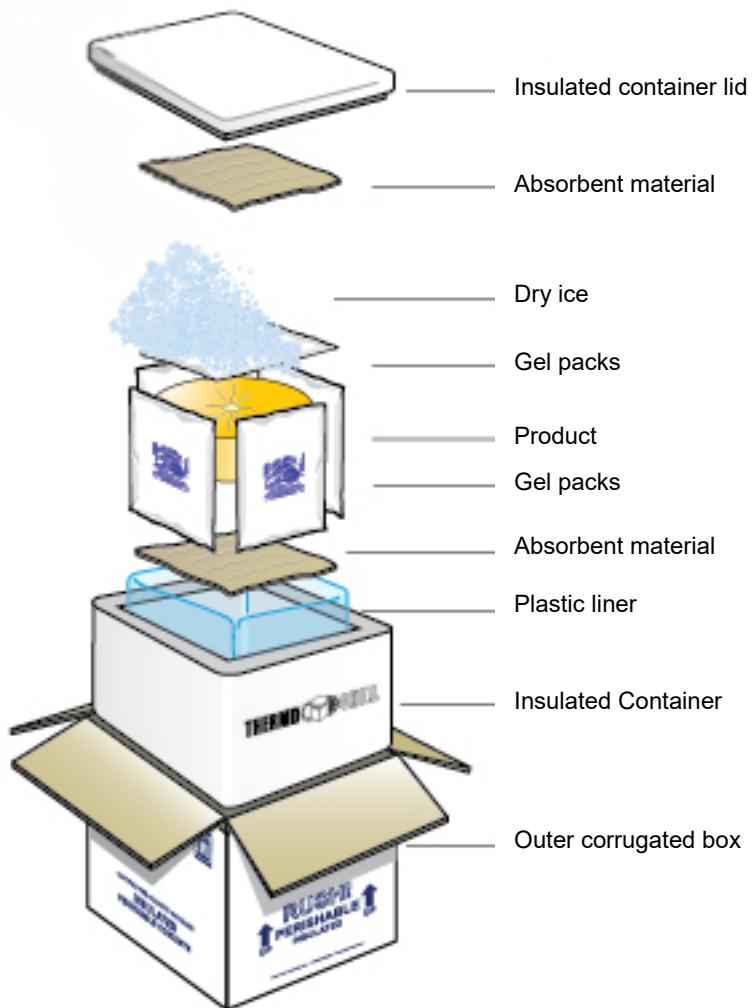
- **Fragility:** VIPs can be more fragile than other insulating materials. Punctures, damages, or defects in the barrier film can compromise the vacuum and significantly reduce the panel's insulative properties.
- **Lifespan:** Over time, even the best barriers will allow some level of gas permeation, which can degrade the vacuum and, consequently, the panel's insulative performance.
- **Cost:** VIPs can be more expensive than traditional insulative materials. However, in applications where high thermal performance in a slim profile is critical, the cost may be justified.
- **Fixed Size:** Once manufactured, the size of a VIP cannot be adjusted (like cutting to fit), as this would breach the vacuum seal.

Applications:

VIPs are used in a wide range of applications, including:

- **Cold Chain Logistics:** VIPs are particularly valuable in transporting temperature-sensitive goods like pharmaceuticals, biotech products, and certain foods.
- **Appliances:** Many modern refrigerators and freezers use VIPs to improve thermal performance without increasing wall thickness.
- **Building and Construction:** VIPs can be used in walls, roofs, and floors to provide high levels of insulation in a slim profile.

- Specialized Containers: For example, VIPs might be used in containers designed to store and transport organs for transplantation, ensuring they remain at the desired temperature.


Future and Innovations:

Research and development continue in the field of VIPs, with aims to improve their longevity, reduce costs, enhance performance, and find new applications for their use.

In conclusion, Vacuum Insulated Panels (VIPs) are a revolutionary thermal insulation solution that offers superior performance, especially where space is at a premium. Proper care in handling and understanding their limitations ensures they can be used to great effect across various industries.

e. Dry Ice Packaging

Dry ice is the solid form of carbon dioxide (CO₂). It sublimates, which means it transitions directly from a solid state to a gaseous state without going through a liquid phase. This property makes it a potent cooling agent. When dry ice sublimates, it maintains a temperature of approximately -78.5°C (-109.3°F).

(Polar Tech Industries, n.d.)

Packaging Components:

- **Insulated Containers:** Dry ice is often used in combination with insulated containers, like expanded polystyrene (EPS) foam, vacuum insulated panels (VIPs), or other insulating materials. This helps retain the cold temperature for extended periods.
- **Protective Gloves:** When handling dry ice, it's essential to use protective gloves to prevent frostbite.
- **Ventilation:** As dry ice sublimates into CO₂ gas, there's a need for containers to be vented or not completely airtight. Accumulated CO₂ gas can lead to container rupture due to pressure build-up.
- **Temperature Range:** -78.5°C

Pros:

- Ultra-Low Temperatures: Dry ice can maintain products at extremely low temperatures, making it ideal for shipping certain pharmaceuticals, frozen foods, and biological samples.
- No Liquid Residue: Since dry ice sublimates, it leaves no liquid mess behind. This is especially beneficial for shipments where any liquid could damage the contents or the packaging.
- Ease of Use: Dry ice doesn't require complex machinery or equipment to be used as a refrigerant.

Cons:

- Handling Care: Direct contact with dry ice can cause cold burns or frostbite. Always handle with protective gloves.
- Ventilation: As mentioned, CO₂ gas needs to be allowed to escape from packaging. Moreover, it's crucial never to store dry ice in airtight containers.
- Short Lifespan: Dry ice sublimates over time, even in insulated containers. This means the cooling effect diminishes over time, which can be a limitation for long-duration shipments.
- Regulations: Shipping with dry ice is subject to various regulations, as it's considered a hazardous material. Shippers need to be aware of and adhere to these regulations.

Applications:

- Pharmaceuticals: Many medications and vaccines, especially those based on RNA (like some COVID-19 vaccines), require ultra-low temperatures during transportation.
- Biological Samples: Tissues, blood samples, and other biological materials that need to be preserved in a deep-frozen state.
- Frozen Foods: Specialty foods or gourmet items that need to remain frozen during transit.
- Chemical and Laboratory Shipments: For experiments or processes requiring extremely cold conditions.

Future and Innovations:

With the increasing demand for cold chain logistics, especially in the pharmaceutical sector, innovations in dry ice production, storage, and shipping solutions are ongoing. More efficient and longer-lasting insulation materials, combined with dry ice, can further extend the shipping durations for temperature-sensitive goods.

f. Temperature-Controlled Containers

Temperature-controlled containers are designed to maintain a consistent internal temperature, regardless of external conditions. They can either heat or cool the contents based on the set temperature, ensuring products remain at their optimal condition during transit.

Key Features:

- Thermal Insulation: Made with high-quality insulation materials to reduce the exchange of heat and maintain the desired temperature inside.
- Adjustable Temperature Settings: These containers come with adjustable temperature settings, allowing for a wide range of temperatures to be set based on the product's requirements.
- Real-time Monitoring: Many modern containers offer real-time temperature monitoring and tracking capabilities, ensuring the safety of temperature-sensitive goods.
- Power Source: They are typically powered by diesel generators, although there are electric and hybrid options available as well.

Benefits of Using Temperature-Controlled Containers:

- Versatility: Suitable for a variety of products, from frozen foods and pharmaceuticals to chemicals and electronics.
- Global Shipping: They can maintain the product's desired temperature for extended periods, making them ideal for long-haul shipments, including intercontinental ones.
- Reduced Waste: By maintaining the quality and safety of products, these containers reduce the chances of products becoming unsellable due to temperature fluctuations.
- Safety and Compliance: Ensures that temperature-sensitive goods are transported in compliance with global standards and regulations.

Types of Temperature-Controlled Containers:

- Reefer Containers: The most common type used for ocean freight. They can be as large as 40-foot containers and are equipped with powerful refrigeration units.

- Refrigerated Trailers: Typically used for road transport, these trailers can maintain both frozen and chilled temperatures.

- Air Cargo Containers: Specifically designed for air freight, these containers are lighter and often come with advanced monitoring systems.

RKN e1 container (Envirotainer, n.d.)

Features of RKN e1 container

- Electrical heating and compressor cooling for flexible set temperature depending on shipping requirements
- Rechargeable batteries that can be recharged at standard AC-power connection points
- Enhanced air circulation inside the container ensures a low-temperature gradient within the cargo space
- An easy to use control unit allowing simple operation of the container
- Data logging functionality
- Forkliftable even when fully loaded, eliminating the need of roller beds
- Lightest active RKN solution in the market

Considerations When Using Temperature-Controlled Containers:

- Pre-cooling: Before loading, it's vital to pre-cool the container to the desired temperature to ensure consistency throughout the journey.
- Packing: Proper packing ensures even cooling. Overpacking or underpacking can lead to uneven temperature distribution inside the container.
- Maintenance: Regular maintenance of the refrigeration unit is essential to ensure it operates efficiently and reliably.

Pros:

- Active systems can autonomously maintain temperatures for extended periods.
- Offers integrated monitoring and tracking capabilities.
- Suitable for large quantities or pallet-sized loads.

Cons:

- Expensive compared to passive solutions.
- Requires power source for active temperature control mechanisms.

Applications:

- Pharmaceuticals: Many medicines, especially vaccines, are sensitive to temperature fluctuations and need to be transported under strict conditions.
- Perishable Foods: Fruits, vegetables, meats, and seafood often require chilled or frozen conditions during transit.
- Chemicals: Some chemicals can degrade or become volatile if exposed to temperature fluctuations.
- Floral: Flowers and plants often need specific temperatures to maintain freshness and prevent wilting.

Future and Innovations:

With growing demands in cold chain logistics, there's continuous innovation in temperature-controlled containers. This includes improvements in insulation materials, more efficient cooling systems, better real-time monitoring capabilities, and integration with IoT for enhanced tracking and reporting.

In summary, temperature-controlled containers play a pivotal role in ensuring that temperature-sensitive goods reach their destinations in optimal condition, thereby ensuring safety, quality, and compliance with industry regulations.

2.6 Temperature monitoring

Temperature monitoring is an integral part of ensuring the integrity of the cold chain. Effective temperature monitoring can help avoid spoilage, preserve quality, and meet compliance

standards. Various methods and technologies can be used for this purpose:

Manual Checks

- Thermometers:
Basic but essential tools for spot-checking temperatures in various zones.
- Temperature Tapes and Strips:
Placed inside packaging or in storage areas to provide a visual indication if temperatures go out of range.

Automated Systems

- Data Loggers:
Data loggers are electronic devices designed to record data points from sensors over a period of time or in relation to a location. Equipped with a microprocessor, internal memory for data storage, and sensors (or ports to connect external sensors), data loggers are versatile tools that can measure various parameters like temperature, humidity, voltage, and more.

Channels

They can be single-channel, measuring and collecting only one type of data, like temperature or humidity. Or multi-channel, measuring and collecting different types of data.

Storage and connectivity

Data loggers can either store data internally for later download or transmit data in real-time to a computer or cloud-based system for real-time monitoring.

Sampling Rate

The rate at which a data logger samples and records information can usually be configured according to the needs of the application, ranging from milliseconds to hours.

Calibration

Regulatory compliance is an essential aspect of data logger calibration, especially in industries that are highly regulated such as pharmaceuticals, food and beverage, and healthcare. Ensuring that your data loggers are calibrated according to the required standards is not just a best practice but often a legal requirement.

In Singapore, the calibration of data loggers generally aligns with international standards and practices. However, some specific requirements might vary based on the industry and its governing bodies.

- IoT Devices:

The advent of the Internet of Things (IoT) has revolutionized temperature monitoring, particularly in industries where the precise control of environmental conditions is crucial. IoT temperature monitoring devices are versatile and offer real-time, remote monitoring, saving both time and resources.

Real-Time Monitoring:

IoT devices can provide real-time temperature data, which is particularly useful for sensitive items like pharmaceuticals, perishable food, and chemical products.

Remote Access:

Temperature data can be accessed remotely from any location, allowing for global oversight of temperature-sensitive goods.

Automated Alerts:

Users can set specific temperature thresholds, triggering alerts via SMS or email if the temperature goes beyond the set parameters.

Data Logging:

These devices continuously log temperature data, making it easier to track trends and anomalies over time.

Cloud Storage:

IoT devices often come with cloud storage capabilities, making it easier to manage and retrieve data securely.

Examples

TempMate®-S1: A single-use logger for pharmaceuticals and food items.

Source: <https://www.tempmate.com/solutions/tempmate-s1-v2/>
(tempmate, n.d.)

Sensaphone Sentinel: Offers a range of monitoring systems that can include temperature sensors.

Source:

<https://www.youtube.com/watch?v=h0MXxZ35c6c&t=183s&ab>

References

Bryan. (21 May, 2020). *Hot Pull Down and What it Means*. Retrieved from HVAC School: <https://hvacschool.com/hot-pull-means/>

Envirotainer. (n.d.). *RKN e1 Container*. Retrieved from Envirotainer: <https://www.envirotainer.com/products/rkn-e1-container/>

PharmOut. (3 Oct, 2022). *Practical points to consider when temperature mapping a warehouse*. Retrieved from PharmOut.net: <https://www.pharmout.net/understanding-temperature-mapping/>

Polar Tech Industries. (n.d.). *Dry Ice*. Retrieved from Polar-tech.com: <https://www.polar-tech.com/dry-ice/>

Safety Storage Systems. (n.d.). *Chemicals That Require Temperature Controlled Storage*. Retrieved from Safety Storage Systems: <https://safetystoragesystems.co.uk/blog/chemicals-that-require-temperature-controlled-storage/>

tempmate. (n.d.). *tempmate®-S1 V2 | Single use temperature data logger*. Retrieved from tempmate: <https://www.tempmate.com/solutions/tempmate-s1-v2/>

3.1 Introduction

Cold chain logistics is a critical aspect of supply chain management, especially for perishable goods such as food and pharmaceuticals. Despite its importance, several pitfalls and failure modes can compromise the integrity of the cold chain, leading to financial losses and potential health risks. This unit delves into the common pitfalls and failure modes in cold chain logistics.

3.1.1 Consequences of Cold Chain Failure

Product Spoilage:

- The most immediate consequence is the spoilage of temperature-sensitive goods, which can result in significant financial losses.

Safety Risks:

- In the case of pharmaceuticals, particularly vaccines, a breach in the cold chain can reduce their efficacy or even render them harmful, posing serious health risks to patients.
- In the case of perishable goods, failure can lead to the growth of harmful bacteria, increasing the risk of foodborne illnesses.

Economic Loss:

- The financial implications of cold chain failures are substantial. These include the cost of the lost products, additional logistics costs for replacement or disposal, and potential loss of future sales due to damaged client relationships.

Reputational Damage:

- Companies that experience cold chain failures can suffer significant damage to their reputation. In industries where trust is paramount, such as pharmaceuticals and food, this can lead to long-term business impacts and loss of market share.

Regulatory and Legal Consequences:

- Failing to maintain the cold chain can lead to violations of industry regulations, resulting in fines, legal actions, and other penalties. This is especially critical in highly regulated sectors like pharmaceuticals and food safety.

Supply Chain Disruptions:

- Cold chain failures can cause ripple effects throughout the supply chain. This includes delays, increased costs, and the need for contingency plans, affecting manufacturers, distributors, retailers, and ultimately, consumers.

3.1.2 Different types of failures

3.1.2.1 Equipment Failure

Refrigeration units can fail due to mechanical issues, power outages, or electricity fluctuations.

Types of Equipment Failure

Refrigeration Unit Breakdown:

The most direct form of equipment failure is when refrigeration units stop working. This can be due to mechanical issues, electrical faults, or wear and tear over time.

Power Supply Interruptions:

Power outages or fluctuations can disrupt the functioning of cooling systems. In regions where power supply is unstable, this poses a significant risk.

Coolant System Failures:

Failures within the coolant circulation systems can lead to insufficient cooling, affecting the product's temperature maintenance.

Thermal Insulation Defects:

Deterioration or damage to insulation materials in refrigeration units can lead to loss of cooling efficacy.

Causes of Equipment Failure

Inadequate Maintenance: Skipping regular maintenance checks can lead to equipment failures, as potential issues are not identified or resolved in a timely manner.

Overuse or Misuse:

Equipment that is used beyond its capacity or in ways it wasn't designed for is more likely to fail.

Examples of misuse or overuse can include:

Excessive Loads:

Loading refrigeration units beyond their capacity can strain cooling systems, leading to overheating and failure.

Continuous Operation:

Running equipment continuously without breaks can wear down components faster than if they were used in a regular on-and-off cycle.

Ignoring Duty Cycles:

Equipment has specified duty cycles that indicate how long it can operate before needing rest. Overlooking these can lead to failures.

Improper Temperature Settings:

Setting temperatures lower or higher than necessary for the products being stored can lead to excessive energy consumption and wear.

Environmental Factors:

External temperatures, humidity, and other environmental conditions can strain cooling systems and lead to breakdowns.

Mitigation Strategies

Regular Maintenance and Inspections:

Establishing a routine for regular checks and maintenance of refrigeration units can prevent unexpected breakdowns.

Redundant Systems:

Having backup systems or dual refrigeration units can provide continuity in case one system fails.

Remote Monitoring and IoT:

Implementing remote monitoring technologies to alert operators of any equipment irregularities can facilitate immediate action.

Power Backup Solutions:

Utilizing uninterruptible power supplies (UPS) or generators can keep equipment running during power outages.

Training:

Ensuring staff is adequately trained to operate and troubleshoot equipment minimizes the risk of failure due to human error.

Quality Equipment:

Investing in high-quality and robust refrigeration units from reputable manufacturers can reduce the likelihood of failure.

Environmental Controls:

Managing external environmental factors through proper warehouse design and climate control can reduce the strain on refrigeration equipment.

By understanding the various aspects of equipment failure and implementing these mitigation strategies, cold chain logistics providers can significantly reduce the risk of such failures and their associated impacts on the supply chain.

3.1.2.2 Packaging Failures:

Incorrect packaging or damage during transport can jeopardize the integrity of the products. Using robust and appropriate packaging materials and ensuring that the packing process occurs in temperature-controlled environments can prevent such occurrences. (Roambee, n.d.)

Mitigation strategies.

Material Testing and Selection:

Conduct thorough testing to select the most appropriate packaging materials for specific temperature ranges and product types.

Design Optimization:

Design packaging to withstand the rigors of transport, considering factors like stacking strength and vibration resistance.

Quality Control:

Implement stringent quality control measures to ensure consistent manufacturing and sealing of packaging.

Thermal Validation:

Regularly test packaging designs in simulated transport environments to validate their thermal performance.

Standardization of Sizes:

Use standardized packaging sizes tailored to product dimensions to minimize movement and maximize thermal efficiency.

Training:

Train staff on the correct packaging techniques and the importance of maintaining the integrity of the packaging.

Redundancy:

Incorporate elements of redundancy, such as secondary containment or additional insulation, to safeguard against primary packaging failure.

Monitoring:

Use temperature monitors and indicators to detect and address packaging breaches in real-time during transit.

While the strategies above are able to prevent packaging failure, it is important to note that some of the strategies will not be available to all but very big organizations. In summary, it would be possible to achieve all these by doing proper research on the packaging and buy the ones that suit your purpose.

3.1.2.3 Human error:

Human error is another major challenge in cold chain logistics. Mistakes can be made during any stage of the cold chain, from loading and unloading products to monitoring and maintaining temperatures. These mistakes can lead to temperature fluctuations and product damage.

Here are some common examples of human error in cold chain logistics:

Improper loading and unloading:

Improper loading and unloading of products can damage packaging, expose products to temperature fluctuations, and introduce contaminants.

Failure to follow temperature monitoring procedures:

Employees may neglect to monitor temperatures regularly or fail to record and act on temperature deviations.

Incorrect temperature settings:

Incorrectly setting or adjusting refrigeration equipment can lead to temperature fluctuations and product damage.

Lack of communication:

Failure to communicate temperature data, product status, or potential issues can lead to delays in identifying and addressing problems.

Fatigue and inattention:

Fatigue and inattention can increase the likelihood of errors, such as overlooking temperature deviations or mishandling products.

Lack of training or understanding:

Employees may lack adequate training or understanding of cold chain procedures, increasing the risk of making mistakes.

Mitigation Strategies

Mitigating human error in cold chain logistics involves a multifaceted approach that includes training, process improvement, and technology.

It can be broadly classified into Training, Management and Control:

Category	Examples of Human Error	Mitigation Strategies
Training	- Lack of training or understanding - Failure to follow temperature monitoring procedures	- Comprehensive training programs - Regular refresher courses and updates - Hands-on training sessions
Management	- Lack of communication - Fatigue and inattention	- Implementing clear communication protocols - Adequate staffing levels and reasonable shift patterns - Encouraging a culture of openness and employee well-being
Control	- Improper loading and unloading - Incorrect temperature settings	- Standardized procedures for loading and unloading - Restricted access to control settings - Regular audits and checks for procedural adherence

Table 3.1.2.3

3.1.2.4 Transportation Risks:

Transportation risks in cold chain logistics involves examining the various challenges and potential issues that can arise during the transit of temperature-sensitive goods. These risks are critical to address as they can lead to compromised product integrity, financial losses, and health hazards.

Mechanical Failures:

Vehicles and refrigeration units can suffer mechanical breakdowns. This can result from engine failures, refrigeration unit malfunctions, or other technical issues, leading to a loss of temperature control.

Traffic Delays and Route Deviations:

Unforeseen traffic conditions or accidents can extend the time goods are in transit, potentially exposing them to unsuitable conditions. This is especially critical for products with a short shelf life or those requiring strict temperature control.

Environmental Factors:

Extreme weather conditions, such as heatwaves or cold snaps, can strain the refrigeration systems and impact their efficiency. Additionally, high humidity or rainfall can affect the integrity of packaging and goods.

Security Risks:

The theft or tampering of goods during transit is a concern, especially for high-value pharmaceuticals. Ensuring secure transportation and monitoring is essential.

Regulatory Compliance:

Different regions and countries may have varying regulations regarding the transportation of perishable goods. Non-compliance can result in fines, seizure of goods, or denial of entry.

Logistical Challenges:

Coordinating the pick-up, transit, and delivery of goods while maintaining the cold chain integrity can be complex. This includes ensuring the compatibility of equipment and facilities at all stages of the supply chain.

Cross-Contamination Risks: In scenarios where different products are transported together, there's a risk of cross-contamination, especially if products have different temperature or handling requirements.

By addressing these risks with strategic planning, technology adoption, training, and strict adherence to protocols, companies can significantly reduce the occurrence of these pitfalls in their cold chain logistics operations.

Risk/Challenge	Mitigation Strategy
Mechanical Failures	Regular maintenance and inspection of vehicles and refrigeration units; Employing backup systems in case of equipment failure.
Traffic Delays and Route Deviations	Utilize GPS and route optimization software to plan efficient routes; Build in buffer times to account for potential delays.
Environmental Factors	Use weather-resistant packaging; Plan transportation schedules considering seasonal weather patterns.
Security Risks	Implement security measures like GPS tracking, seals, and locks; Conduct thorough background checks on personnel.
Regulatory Compliance	Stay updated with international and local regulations; Ensure all transport activities comply with relevant laws and standards.
Logistical Challenges	Utilize logistics management software for coordination; Establish strong communication channels among all supply chain partners.
Cross-Contamination Risks	Segregate products with different requirements; Adhere to strict sanitation and handling protocols.

4.1 Introduction

Cold chain logistics is a critical aspect of supply chain management, especially for perishable goods such as food and pharmaceuticals. Despite its importance, several pitfalls and failure modes can compromise the integrity of the cold chain, leading to financial losses and potential health risks. This unit delves into the common pitfalls and failure modes in cold chain logistics.

4.2 Standards and Guidelines

Standard/Guideline	Purpose	Standard-Setting Body
GxP Guidelines (Good Manufacturing Practices, Good Distribution Practices, etc.)	Provide a comprehensive set of guidelines for different aspects of the pharmaceutical supply chain, including manufacturing, distribution, and quality control.	World Health Organization (WHO)
GDPMDS (Good Distribution Practice for Medical Devices)	Established guidelines for the storage, transportation, and distribution of medical devices to maintain their quality, safety, and performance.	Regulatory bodies, such as the HSA, EMA, FDA, and national regulatory agencies.
ISO 23412:2020 Indirect, temperature-controlled refrigerated delivery services - Land transport of parcels with intermediate transfer	Establishes requirements for the temperature-controlled refrigerated delivery of parcels containing temperature-sensitive goods.	International Organization for Standardization (ISO)
Australian Cold Chain Guidelines 2017	For the handling, storage and transport of refrigerated fresh, chilled and frozen foods for sale in retail and food service outlets or export customers.	Australian Food and Grocery Council
SS 668: 2020 Cold chain management of chilled and frozen foods	Singapore standard for cold chain management systems of chilled and frozen food. It was established as a benchmark for chilled and frozen food with the objective of widespread application for all industry players concerned. Officially approved in December 2020, SS 668 consists of 5 parts.	Standards Development Organisation (SDO) of Enterprise Singapore.

Table 4.2: Example of standards/ guidelines related to cold chain logistics

4.2.1 Good Distribution Practice (GDP)

GDP is a quality system for warehouse and distribution centers dedicated for active pharmaceutical ingredients (APIs), medicinal products and Investigational Medicinal Products (IMP). GDP accepted international pharmaceutical regulations to stipulate that distributors of pharmaceutical products must align their operations with the standards.

The scheme ensures that consistent quality management systems are in place throughout your entire supply chain, from the early delivery of raw materials to the manufacturing plants, to the final shipment of finished drugs to the end user.

An independent assessment of compliance against international GDP requirements is the most effective way to establish that your quality management system aligns with GDP guidance.

The GDP Guideline will apply not only to the wholesalers and manufacturers of pharmaceuticals, it also incorporates the specific requirements for the Brokers dealing with pharmaceutical products.

The responsibility for the product during storage and distribution will remain with the manufacturers up to the point of sale, where wholesale dealers will take ownership of the products.

Above picture is what GDP cover and used as a guideline to smoothen their operation.

Below are the twelve clauses for GDP :

1. PERSONNEL

1.1. Key personnel in charge of warehousing functions should be competent and possessing appropriate knowledge and experience, and where applicable, the relevant professional and technical qualifications for the tasks assigned to them.

1.2. All personnel should receive initial and continuing training in relation to Good Distribution Practice standards, operating procedures and safety issues, in accordance with a written training procedure. Special training should be provided for personnel dealing with special categories of products such as cytotoxic, infectious or sensitizing products, products presenting special risks of abuse (including narcotic and psychotropic substances), and cold chain products. Training records should be maintained.

2. PREMISES AND EQUIPMENT

2.1. Storage areas should be designed or adapted to ensure that the required storage conditions are maintained. Premises should also have sufficient security to prevent unauthorized access and misappropriation of the products.

2.2. Receiving and dispatch bays should protect products from the weather. The receiving area should be designed and equipped to allow cleaning of the containers of incoming materials, if necessary, before storage.

2.3. Storage areas should be of sufficient capacity to allow orderly and segregated storage of the various categories of products: those in quarantine and released, rejected, returned or recalled products. These designated storage areas should be clearly marked and the access to the products in quarantine and those that are rejected, returned or recalled should be restricted to authorized personnel. Any system (e.g. computerized and bar coding system) replacing the physical separation should give equivalent assurance in segregation and restriction in accessibility.

2.4. The storage areas should have adequate lighting and ventilation to enable all operations to be carried out accurately and safely.

2.5. The storage areas should be dry, clean and free of accumulated waste and dust. A written cleaning procedure should be available indicating the frequency and methods to be used to clean the premises. Cleaning should be conducted so as not to present a source of contamination. Cleaning records should be maintained. For cytotoxic, infectious or sensitizing products, there should be appropriate procedures for the cleaning up of any spillage to ensure complete removal of any risk of contamination.

2.6. Products should be stored off the ground and suitably spaced to permit cleaning and inspection. Pallets should be well maintained and kept in a good state of cleanliness.

2.7. Storage conditions for products should be in compliance with the instructions on the label. All equipment impacting on storage and distribution of products should be designed, located, maintained and cleaned to a standard which suits its intended purpose. The storage areas should be equipped with recorders or devices that will continuously monitor the storage conditions and record the relevant readings such as maximum and minimum temperature and humidity of the day. Appropriate actions on the premises, equipment and/or products should be taken when the storage conditions are not met and these actions taken should be recorded.

2.8. The recorders and devices for monitoring the storage conditions should be located in areas that are most likely to show fluctuations and/or the hottest and coldest locations where appropriate. These measuring equipment should be calibrated for the required operating range at defined intervals. Calibration of these measuring equipment should be traceable to national or international standard and such calibration records should be maintained.

2.9. Appropriate and suitable storage conditions should be provided for hazardous, sensitive and dangerous products such as combustible liquids and solids, pressurized gases, highly toxic substances and radioactive products.

2.10. The storage areas should be designed and equipped to prevent the entry of insects, rodents and other pests/animals. There should also be a pest control programme to identify and prevent pest infestation. Appropriate records should be maintained.

2.11. The presence of food, drink, smoking material or medicinal products for personal use should be prohibited in the storage areas.

3. STOCK HANDLING, STOCK CONTROL AND DELIVERIES

3.1. Upon receipt, each incoming delivery should be checked for tampering and damage. Label description, type and quantity of the incoming products should also be physically verified against the relevant purchase order information. If necessary, any container or the entire delivery should be quarantined or set aside for further investigation. The type and nature of checks should be stated in a written procedure.

3.2. Products subject to specific storage requirements (e.g. narcotics, cold-chain products) should be immediately identified and stored in accordance with the written procedure.

3.3. Products in cartons/bulk packs should be adequately labeled with at least the product name, the batch number and the expiry date or retest date.

3.4. Products with broken seals, damaged packaging or suspected of possible tampering/contamination must not be sold or supplied.

3.5. Periodic stock reconciliation should be performed comparing the actual and recorded product quantity. All significant stock discrepancies should be investigated to check for inadvertent mix-ups and wrong issuance of stocks.

3.6. Products bearing an expiry date must not be received or supplied after their expiry date or so close to their expiry date that

this date is likely to occur before the products are being used by the consumer.

3.7. A system should be in place to ensure that products due to expire first are sold and/or distributed first (Earliest-Expiry-First-Out, EEFO). Where no expiry dates exist for the products, FIFO (First-In First-Out) should be applied. Deviations may, however, be permitted in exceptional cases where such deviation is appropriate and justified.

3.8. Deliveries should be made only to wholesale dealers or persons who are authorized to supply the products.

3.9. A written procedure on the delivery of the products to customers should be available.

3.10. Products should be transported in such a way that:
Their identification is not lost;

They do not contaminate, and are not contaminated by, other products or materials;

Adequate precautions are taken against spillage, breakage or theft;

They are secure and not subject to unacceptable degrees of heat, cold, light, moisture or other adverse influence, nor to be attacked by microorganisms or pests.

3.11. The vehicle/mode of transportation should not be used as a store for the products.

4. DISPOSAL OF PRODUCTS

4.1. Products intended for destruction should be appropriately identified, held separately, and handled in accordance with a written procedure.

4.2. Destruction of products should be carried out in accordance with the national legislative and regulatory requirements and with due consideration to protect the environment.

4.3. Records of all disposed products should be retained for a defined period.

5. DOCUMENTATION

5.1. The documentation system should include the specifications of products (applicable mainly to importers), procedures, instructions, contract, records and data, in paper or in electronic form. These documents should be made available for audit and upon request by the licensing authority.

5.2. Written procedures should be available to describe the different operations which may affect the quality of the products or of the distribution activities: receipt and checking of deliveries,

storage, cleaning and maintenance of premises (including pest control), recording of the storage conditions, security of stocks on site, withdrawal of saleable stock, maintenance of records (including of clients' orders, returned products, recalls), etc.

5.3. The title, nature and purpose of each document should be clearly stated. The contents of documents should be clear and unambiguous. All documents should be approved, signed and dated by an appropriate authorized person(s) and should not be changed without the necessary authorization.

5.4. Documents should be reviewed regularly and kept up to date. When a document has been revised, a system should exist to prevent inadvertent use of the superseded version.

5.5. Records should be made or completed at the time each action is taken in such a way that all significant activities or events are traceable. Any alteration made to the entry should be signed and dated, and the alteration should permit the reading of the original information.

5.6. A record of receipt and distribution of the products shall be kept, stating the product name, date of transaction, invoice/delivery order number, name and address of purchaser/supplier, batch number, expiry date, quantity received/sold and stock balance.

5.7. Documents should be retained for a duration as in accordance with the legal requirements and be readily retrievable.

5.8. Each employee should have ready access to all necessary documentation for the tasks executed.

5.9. Data may be recorded by an electronic data processing system but detailed procedures relating to the system in use should be available and the accuracy of the records should be checked. Only authorized persons should be able to enter or modify data in the computer and there should be a record of changes and deletions (i.e. audit trail); access should be restricted by password or other means. It is particularly important that the data, including audit trail, are readily available throughout the period of retention. These data should also be protected by back-up transfer on separate hard disc, paper or other means.

6. PRODUCT COMPLAINTS

6.1. There should be a written procedure describing the actions to be taken in the handling of all written and oral complaints regarding a possible product defect. There should be a record for each individual product complaint.

6.2. The procedure for handling product complaints shall ensure that the complaints received are investigated and followed through, and that corrective actions are taken to prevent repeated complaints. All original details of the product complaint, investigations and subsequent corrective and preventive actions taken, including product recall should be documented in the product complaint record.

6.3. Within the company, a person shall be designated to handle product complaints. This person must have the authority to initiate investigations.

6.4. If a product defect is discovered or suspected in a batch, consideration should be given to determine whether other batches are also affected.

6.5. Product complaint records should be reviewed regularly for any indication of specific or recurring problems requiring attention.

7. PRODUCT RECALL

7.1. An emergency plan for urgent recalls and a non-urgent product recalls procedure should be described in writing.

7.2. A person or committee should be designated for the co-ordination and execution of all product recalls.

7.3. In the event of a product recall, all customers to whom the product has been distributed shall be informed with the appropriate degree of urgency. The recall message should indicate whether the recall should be carried out at the retail level, and whether there is a need to remove all recalled products immediately from the shelves, and prevent their mixing with other saleable stocks.

7.4. The local regulatory authority should be informed of all product recalls. If the product is exported, the overseas counterparts and/or regulatory authorities must be informed of the recall.

7.5. Where product recall affects a particular batch, consideration should also be given to determine whether other batches are also affected.

7.6. All actions taken in connection with the product recall must be approved by the company and/or regulatory authorities, and recorded.

7.7. The progress of recall process should be recorded and a final report issued, which includes reconciliation made between delivered and recovered quantities of products.

8. RETURNED PRODUCTS

8.1. There should be a written procedure describing the handling of returned products and the corresponding records of all returned products should be kept.

8.2. All returned products should be kept apart from saleable stock to prevent redistribution until a decision has been reached regarding their disposition.

8.3. Returned products should only be returned to saleable stock if all of the following are confirmed:

- the products are in their original unopened and undamaged secondary packaging and are in good condition;
- it is known that the products have been transported, stored and handled under proper conditions;
- the remaining shelf life period is acceptable; and
- the products have been examined and assessed by appropriate and qualified personnel. This assessment should take into account the nature of the product, any special storage conditions required, and the time which had elapsed since it was distributed. Special attention should be given to thermolabile products. Advice should be sought from the marketing authorization (product license) holder or manufacturer as necessary.

Where any doubt arises over the quality of the product, it should not be considered suitable to be returned to saleable stock.

The returned products should be formally released to saleable stock by a nominated, responsible person following a satisfactory quality re-evaluation.

Products returned to saleable stock should be placed in accordance with the FEFO or FIFO system.

9. COUNTERFEIT PRODUCTS

9.1. The sale and distribution of a suspected counterfeit product should be suspended immediately.

9.2. Any counterfeit products found in the supply chain should be physically segregated from other materials to avoid any confusion. They should be clearly labeled as "Not for Sale" or with other similar phrases/words. All relevant activities in relation to such products should be documented and records retained.

9.3. The regulatory authority and the holder of the marketing authorization of the original product should be informed immediately.

9.4. Upon confirmation as a counterfeit product, a formal decision should be taken on removal of such product from the market, ensuring that it does not re-enter the supply chain, including retention of any samples necessary for public health, regulatory, or legal needs and arrangements for its disposal. All related decisions should be appropriately documented.

10. SELF-INSPECTION

10.1. Self-inspections should be conducted to monitor the implementation and compliance with this (GDP) standard and to propose necessary corrective and preventive measures.

10.2. Self-inspections should be conducted in an impartial and detailed way by designated, competent personnel. There should be a written procedure on self-inspection stating the persons involved in self-inspection, the frequency of self-inspection and the inspection criteria.

10.3. All self-inspections should be recorded. This record should include all observations made during the inspection. In the event that irregularities and/or deficiencies are observed, their cause should be determined and the corrective and preventive actions (CAPA) should be documented and followed up.

11. CONTRACT ACTIVITIES

11.1. Any activity covered by this (GDP) standard that is delegated to another party should be agreed upon between the contract giver and contract acceptor in a written contract.

11.2. The contract should define in detail the responsibilities of the contract giver and contract acceptor including compliance with this standard.

11.3. The contract should permit the contract giver to visit the facilities of the contract acceptor. Depending on the nature of activities performed, the contract acceptor should understand that he might be subject to inspection by the regulatory authority.

11.4. The contract giver is responsible for assessing the competence of the contract acceptor to successfully carry out the work required and for ensuring that the principles and guidelines of GDP are followed. Any contract acceptor should be audited periodically by the contract giver.

11.5. The contract acceptor should refrain from any activity which may adversely affect the quality of the product(s) handled for the contract giver.

12. HANDLING OF ACTIVE PHARMACEUTICAL INGREDIENT OR INTERMEDIATES

12.1. This section are additional requirements which are relevant the agents, brokers, traders or distributors, generally referred to as "dealer" who may trade and/or take possession, distribute or store an API or intermediate.

12.2. Active Pharmaceutical Ingredient (API) is any substance or mixture of substances intended to be used in the manufacture of a drug (medicinal) product and that, when used in the production of a drug, becomes an active ingredient of the drug product. Such substances are intended to furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease or to affect the structure and function of the body.

12.3. Intermediate is a material produced during steps of the processing of an API that undergoes further molecular change or purification before it becomes an API.

12.4. The dealers should maintain complete traceability of APIs and intermediates that they distribute. Documents that provides traceability includes identity and address of the original manufacturer, purchase orders, transportation documentation, manufacturer's batch number, transportation and distribution records as well as authentic Certificates of Analysis.

12.5. Original certificates of analysis issued by the manufacturer or authenticated copies of the original certificates of analysis should be provided for each batch of intermediates or APIs on request by the customers.

4.2.2 GDPMDS

The GN-33: Guidance on the Application of Singapore Standard Good Distribution Practice for Medical Devices (GDPMDS) provides detailed guidelines on various aspects of medical device distribution. Here's a more detailed summary with specific points, including those related to Secondary Assembly: (HSA, 2023)

Quality Management System:

- Emphasizes a robust quality management system and specific documentation requirements.

Resource Management:

- Stresses the importance of skilled personnel and their training in GDPMDS standards.

Premises and Facilities:

- Details requirements for storage, cleanliness, pest control, and stock rotation.
- Discusses delivery of medical devices, focusing on maintaining their integrity during transport.

Traceability:

- Highlights the significance of traceability in the distribution chain for safety actions and quality investigations.

Counterfeit, Adulterated, Unwholesome, or Tampered Medical Devices:

- Addresses the handling and reporting of counterfeit or tampered medical devices, including segregation and supply chain investigation.

Complaint Handling:

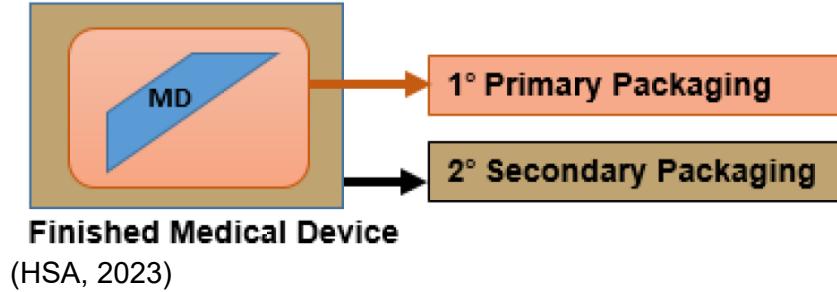
- Provides guidelines for managing complaints, ensuring thorough investigation and follow-up actions.

Field Safety Corrective Action (FSCA):

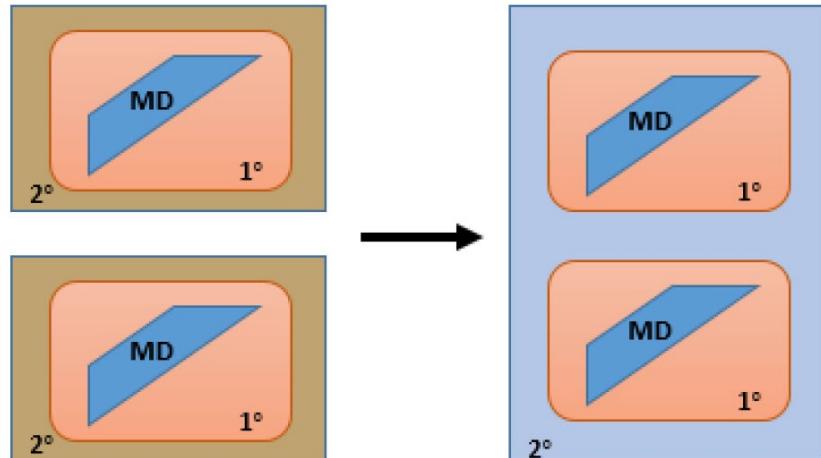
- Discusses procedures for FSCAs, including notification to regulatory authorities and recall processes.

Internal Audit:

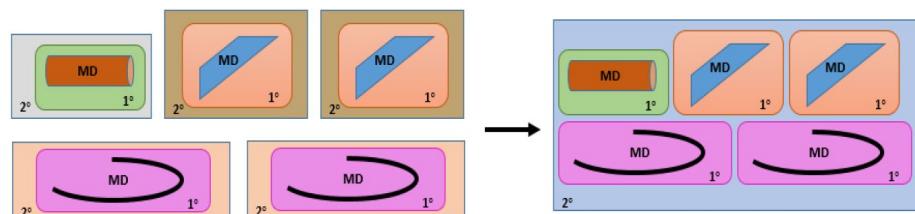
- Mandates regular internal audits to ensure compliance with GDPMDS standards and continual improvement of practices.

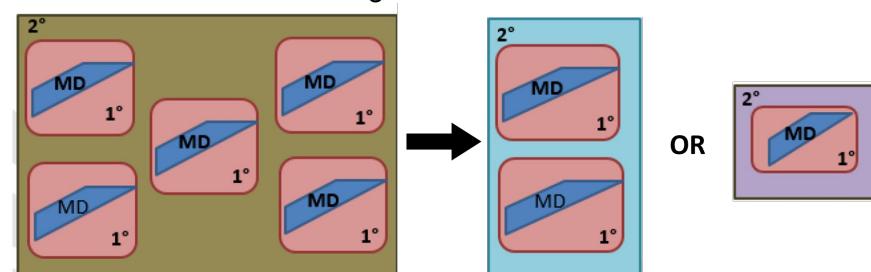

Cold Chain Management:

- Offers guidance on managing medical devices requiring cold chain conditions, covering documentation, personnel training, receipt of stock, storage conditions, delivery, calibration, and returns.


Secondary Assembly:

- Requires adequate workspace to avoid confusion or mix-up.
- Specifies segregated areas for approved, quarantined, rejected, recalled, and returned materials or products.
- Assembly areas should be well-lit and effectively ventilated.
- Outlines the need for proper controls during assembly, including documentation, equipment, and good assembly practices.
- Primary and secondary packaging. (Not to be confused with secondary assembly):


- Primary packaging means the packaging that maintains the sterility or integrity of the medical device. i.e. the layer just before the product. Primary packaging shall not be compromised when performing Secondary assembly.
- Secondary packaging is the “outside” packaging or box.


- Examples of secondary assembly:
 - Repackaging of single units of single type medical device into multiple unit configuration.

- Packaging of single units of different medical devices into multiple unit configuration.

- Break-pack of multiple unit configuration of medical devices into small configurations.

Outsourced Activities:

- Discusses control and monitoring of outsourced activities related to medical device distribution.
- Includes requirements for written contracts defining roles, responsibilities, technical specifications, and contractual agreements.
- The guidance ensures that entities involved in the distribution of medical devices in Singapore adhere to high standards of practice, focusing on maintaining the quality, safety, and efficacy of medical devices throughout the supply chain.

The guidance ensures that entities involved in the distribution of medical devices in Singapore adhere to high standards of practice, focusing on maintaining the quality, safety, and efficacy of medical devices throughout the supply chain.

4.2.3 SS668:2020

SS668:2020 is a Singapore Standard for Cold Chain Management of Chilled and Frozen Foods. It is a comprehensive standard that covers all aspects of cold chain management, from production to consumption. The standard is designed to ensure that chilled and frozen foods are stored, transported, and distributed under controlled conditions to maintain their safety, quality, and wholesomeness.

The standard is divided into five parts:

Part 1: General Requirements

This part of the standard sets out the general requirements for a cold chain system, including the following:

- Establishment and maintenance of a documented cold chain system
- Management of the cold chain at all stages of the supply chain
- Temperature monitoring and control
- Training and qualification of personnel

Part 2: Code of Practice for Meat

This part of the standard provides specific guidance for the cold chain management of meat. It covers the following topics:

- Post-harvest handling of meat
- Icing and chilling of meat
- Cutting, deboning, and offal harvesting of meat
- Packing of meat
- Cold storage of meat
- Transportation and distribution of meat

Part 3: Code of Practice for Vegetables and Fruits

This part of the standard provides specific guidance for the cold chain management of vegetables and fruits. It covers the following topics:

- Post-harvest handling of vegetables and fruits

- Pre-cooling of vegetables and fruits
- Packing of vegetables and fruits
- Cold storage of vegetables and fruits
- Transportation and distribution of vegetables and fruits

Part 4: Code of Practice for Fish

This part of the standard provides specific guidance for the cold chain management of fish. It covers the following topics:

- Post-harvest handling of fish
- Icing and chilling of fish
- Cutting, filleting, and quick-freezing of fish
- Packing of fish
- Cold storage of fish
- Transportation and distribution of fish

Part 5: Code of Practice for Chilled Table Eggs

This part of the standard provides specific guidance for the cold chain management of chilled table eggs. It covers the following topics:

- Post-harvest handling of eggs
- Grading and packaging of eggs
- Cold storage of eggs
- Transportation and distribution of eggs

SS668:2020 is an important standard for businesses that operate in the food industry. It can help to ensure that chilled and frozen foods are handled properly and that they are safe and wholesome for consumption.

SS668:2020 is not mandatory for all businesses in Singapore, but it is recommended for businesses that handle chilled and frozen foods. The standard is based on international best practices and can help businesses to improve the safety and quality of their products. Businesses that implement SS668:2020 may also be able to improve their efficiency and reduce costs.

The Singapore Food Agency (SFA) encourages all businesses that handle chilled and frozen foods to adopt SS668:2020. The SFA can provide information and support to businesses that are interested in implementing the standard.

Here are some of the benefits of implementing SS668:2020:

Improved product safety and quality: SS668:2020 can help businesses to ensure that their chilled and frozen foods are handled properly and that they are safe and wholesome for consumption.

Reduced food waste: Proper cold chain management can help to reduce food waste by preventing spoilage.

Improved efficiency: SS668:2020 can help businesses to improve their efficiency by streamlining their cold chain operations.

Reduced costs: Improved efficiency and reduced food waste can lead to lower costs for businesses.

Improved customer satisfaction: Customers are more likely to be satisfied with products that are safe, high-quality, and have a long shelf life.