	BOREHOLE No
- -	BH1
	Sheet
	1 of 2

SAN	/IPLES &	& TESTS	Τ.		<u>'</u>		STRATA	•	ent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION		Instrument / Backfill
0.30	D					(1.25)	Concrete slab MADE GROUND (brown slightly clayey g with occasional brick and concrete cobb comprises brick, flint clinker and concret	ravelly sand les. Gravel te)	
1.20-1.65	D	8,15/15,8,5,5 N60 = 37			0.0.0	1.40	medium dense orange-brown clayey fine	e to coarse sand	
1.75	D				00.00	ŧ	and gravel. Gravel comprises multicolou coarse, rounded to angular flint.	red, fine to	
2.00-2.45	В	5,5/6,6,7,7 N60 = 29			0.000	-	coarse, rounded to angular mine.		
2.75	D				0.0.0				
3.00-3.45	В	5,6/7,7,8,9 N60 = 35			0 0 0	(3.60)			
3.75	D		1		0.0.0.0	ļ			
4.00-4.45	В	5,6/6,6,6,7 N60 = 28	=		0.0.0.0	- - - - - - - -			
4.75	D				0.0.0	5.00			
5.00-5.45	D	3,3/4,4,4,4 N60 = 18			× × × × × × × × × × × × × × × × × × ×	- 5.20 - - -	Stiff brown silty clay, with occasional pa orange-brown sandy clay, and rare fine gravel. Very stiff fissured grey silty clay.	rtings of to medium flint	
6.00	D				* - X - X - X - X - X - X - X - X - X -	- 	very sum instance grey sitty day.		
6.50-6.95	U100				X X X X X X X X X X X X X X X X X X X				
7.50	D				× × =	- - - -			
8.00-8.45	S	3,4/5,6,7,6 N60 = 27			× × × × × × × × × × × × × × × × × × ×				
9.00	D				× × × × × × × × × × × × × × × × × × ×	 			
9.50-9.95	U100				× ×	-			
Boring	Progre	ss and Water O					GENERAL		
Depth I	Date	Time Casi Depth	ng Dia.	mm D	Vater epth		REMARKS		
		339	41			Water add Groundwa	slab cored and services pit excavated to 1 ded to aid drilling to a depth of 4.00 m ater strike encountered at 4.00 m e installed to a depth of 5.00 m on comple		
All dimensio	ns in me 1:62.5	tres Method/ Plant Used C	ut-c	lown ca	able pe	rcussion	rig (short legs)	Logged By PRELIMIN	ARY

Boring Progress and Water Observations										
Depth	Date	Time	Cas Depth	sing Dia. mm	Water Depth					
			•		•					

GENERAL REMARKS

	BOREHOLE No
-	BH1
†	Sheet
	2 of 2

SAI	MPLES 8	k TESTS	e			Donati	STRATA		ment kfill
Depth	Type No	Test Result	Water	Reduced Level	Legend	116221	DESCRIPTION		Instrument
					××_ ××_	(9.80)	Very stiff fissured grey silty clay.(continu	ued)	
10.50	D				xx_ xx_	1 1 -			
11.00- 11.45	S	3,4/5,5,6,7 N60 = 26			<u> </u>	<u>*</u>			
11.45		1100 - 20			<u> </u>	<u> </u>			
12.00	D				* <u>*</u> *	<u> </u>			
12.50-	U100				× ×	† •			
12.95	0100				X_X_	<u>+</u> +			
					^x_^- *x	* - *			
13.50	D				xx_	-			
14.00	D				* <u>*</u> *- * <u>*</u> *-	<u></u>			
14.55-	S	5,4/5,6,7,7			× × ×	¥[- - -			
15.00		N60 = 28				15.00			
						<u> </u>			
						-			
						Ē			
						-			
						Ē			
Boring Depth	g Progre _{Date}	ss and Water Obtion Time Casir Depth [se	rvation	S 'ater epth		GENERAL REMARKS		
- 12 41.		Depth L	<u>.a.</u>	mm De		Concrete	slab cored and services pit excavated to 1	1.20 m	
						Groundw Standpipe	ded to aid drilling to a depth of 4.00 m ater strike encountered at 4.00 m e installed to a depth of 5.00 m on comple	etion	
						r r	,		
All dimensi	ons in ma	tres Method/						Logged By	
	2 1:62.5	Plant Used Cu	ut-c	down ca	ble pe	rcussion	rig (short legs)	PRELIMINA	٩RY

Boring Progress and Water Observations										
Depth	Date	Time	Cas Depth	ing Dia. mm	Water Depth					
			•		•					
	l									

GENERAL REMARKS

			-								
Hole No.		T 1	nple		Soil Description	NMC	Passing 425µm	LL	PL	PI	Remarks
	Ref	Top m	Base m	Туре	·	%	423μm %	%	%	%	
BH1	-	6.00	,	D	Dark grey silty CLAY	32	100	56	31	25	
BH1	-	8.00	8.45	D	Dark grey silty CLAY	26	100	53	32	21	
BH1	-	11.00	11.45	D	Dark grey silty CLAY	27	100	57	32	25	
BH1	-	14.55	15.00	D	Dark grey silty CLAY	28	100	61	31	30	
	-										
	† 										

Unconsolidated Undrained Triaxial Compression tests without measurement of pore pressure Summary of Results

Tests carried out in accordance with BS1377:Part 7: 1990 clause 8 or 9 as appropriate to test type.

		Sar	nple			Test	Dei	nsity		1	D:	~2		At fail	ure		
Hole No.	Ref	Тор	Base	Туре	Soil Description	Type	bulk	dry	W	Lengin	Diameter	σ3	Axial strain	σ1 - σ3		M o d	Remarks
		m	m				Mg	/m3	%	mm	mm	kPa	%	kPa	kPa	е	
BH1	-	6.50	6.95	U	High strength dark grey silty CLAY with rare medium claystone fragments	UU	2.01	1.60	25	198	103	130	5.6	242	121	В	
BH1	-	9.50	9.95	U	High strength dark grey silty CLAY	UU	2.00	1.59	26	198	103	190	9.6	277	138	В	Sample slightly disturbe
BH1	-	12.50	12.95	U	High strength dark grey silty CLAY with rare medium pyrite nodules and traces of decomposed shell fragments	UU	2.00	1.55	28	198	103	250	3.5	216	108	В	Sample slightly disturbe
egend	UUM	- Multista		a sing		σ3 σ1 - σ3	Maxii	oressure mum cor ained she		eviator s	tress	Mode of	of failure	;	B - E P - F	Plasti	

Borehold-Pit No. SH1		•					Job Ref	-	;	31350
Depth Top							Borehole/	Pit No.		BH1
Depth Base 6.95 m	•					1	Sample N	0.		-
Soil Description High strength dark grey silty CLAY with rare medium claystone (tragments) Samples received 25/01/2022 Schedules received 25/01/2022 Schedules received 26/01/2022 Schedules rec	•						Depth Top)	6.	50 m
Soil Description First Strength Somples received 25/01/2022 Schedules received 26/01/2022 Sche							Depth Bas	se	6.	95 m
Samples received 25/01/2022 Schedules received 25/01/2022 Schedules received 26/01/2022 Schedu		High strength dark	arev siltv CLAY	/ with rare n	nedium cla	vstone	Sample T	уре		U
Test Method BS1377 : Part 7 : 1980, clause 8, single specimen Date of test 03/02/2022	Soil Description	Thigh carenges are			10010	you	Samples re	ceived	25/	/01/2022
Test Number							Schedules r	eceived	26/	/01/2022
Length Diameter Bulk Density Dy Density Dy Density Dy Density Dy Density Dy Density Density Dy Mg/m3 N/Pa N/Pa N/Pa N/Pa N/Pa N/Pa N/Pa N/Pa	Test Method	BS1377 : Part 7 : 1	990, clause 8, s	ingle specir	men		Date of te	st	03/	/02/2022
Bulk Density Moisture Content Dry Density Rate of Strain Cell Pressure Axial Strain Deviator Stress v Axial Strain 200 Victor Stress v Axial Strain 200 Victor Stress v Axial Strain 200 Axial Strain 200 Deviator Stress v Axial Strain 200 Deviator Stress orrected for area change and membrane effects Axial Strain % Deviator Stress corrected for area change and membrane effects Axial Strain % Deviator Stress orrected for area change and membrane effects Mointended Figure 200 Deviator Stress corrected for area change and membrane effects Mointended Figure 200 Deviator Stress corrected for area change and membrane effects Mointended Figure 200 This is provided for information only.	Remarks		Length				198.			
Moisture Content Dry Density Rate of Strain Cell Pressure Axial Strain Deviator Stress v Axial Strain % Deviator Stress corrected for area change and membrane effects This covered by BS1377. This provided for information only.			Bulk Density							
Rate of Strain Cell Pressure 130 Axial Strain Deviator Stress, (01 - 03)f Undrained Shear Strength, cu Mode of Failure Brittle Axial Strain 04 Brittle Apa ½(01 - 03)f Axial Strain 05 Brittle Axial Strain 06 Brittle Apa ½(01 - 03)f Brittle Deviator Stress v Axial Strain 07 Axial Strain % Axial Strain % Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.			Moisture Con				25		%	
Triator Stress v Axial Strain 50 50 50 50 60 7 8 9 10 11 12 Axial Strain % Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.	ple		Dry Density			Į	1.00)	Mg/m3	
riator Stress v Axial Strain 00 00 50 00 1 2 3 4 5 6 7 8 9 10 11 12 Axial Strain % Deviator stress corrected for area change and membrane effects 150 150 150 150 150 150 150 15	sam									
riator Stress v Axial Strain 00 00 50 00 1 2 3 4 5 6 7 8 9 10 11 12 Axial Strain % Deviator stress corrected for area change and membrane effects 150 150 150 150 150 150 150 15	this is)						
Triator Stress v Axial Strain 00 00 00 00 00 00 00 00 00				ess, (σ1 - σ	i3)f		242	2		
riator Stress v Axial Strain 50 00 50 00 1 2 3 4 5 6 7 8 9 10 11 12 Axial Strain % Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.	sitio				th, cu				kPa ½(o	σ1 - σ3)f
00	%		Mode of Failu	ıre			Brittl	.e]	
0 50 100 150 200 250 300 350 400 450 500 550 600	200 150 100 50 0 0 1 100 100 100	2 3	4 5			8	9	10	Deviator s for area of membrane Mohr circle interpretat covered by This is pro	tress corrected nange and e effects es and their ion is not y BS1377.
	0	100 150 200	250 300	350	400 4	50 5	500 550	600		

			Job Ref	31350
			Borehole/Pit No.	BH1
			Sample No.	-
			Depth Top	9.50 m
		<u> </u>	Depth Base	9.95 m
			Sample Type	U
Soil Description	Hiç	gh strength dark grey silty CLAY	Samples received	25/01/2022
			Schedules received	26/01/2022
Test Method	BS1377 : Part 7 :	1990, clause 8, single specimen	Date of test	03/02/2022
Remarks		Test Number	1	1
		Length Diameter	198.0 103.0	mm mm
Sample slightly	disturbed	Bulk Density	2.00	Mg/m3
		Moisture Content	26	%
ble T		Dry Density	1.59	Mg/m3
Position within sample		Rate of Strain Cell Pressure	2.0 190	%/min kPa
ithin		Axial Strain	9.6	%
w uc		Deviator Stress, (σ1 - σ3)f	277	kPa
ositi		Undrained Shear Strength, cu	138	kPa ½(σ1 - σ3)f
<u> </u>		Mode of Failure	Brittle	J
viator Stress v A	xial Strain			
250			9	
200				
150				
100				
200 150 100 50				
50				
0				
0 1 2	3 4	5 6 7 8 9 10 Axial Strain %	11 12 13	14 15 16
ohr Circles		Axiai Strain %		
300				
250				Deviator stress corrected
250				for area change and
200				membrane effects
				Mohr circles and their
150				interpretation is not
				covered by BS1377. This is provided for
100				information only.
50				
0 50 1	100 150 200	0 250 300 350 400 450	500 550 600	
		Normal Stresses kPa		

Borehote PH No. BH1 Sample No.						Job Ref	31350
Depth Top						Borehole/Pit No	. BH1
Soil Description High strength dark grey silty CLAY with rare medium pyrite nodules and traces of decomposed shell fragments Sample Type U Samples received 25/01/2022 Schedules raceived 25/01/2022 Schedules raceived 26/01/2022 Schedules raceived 26/01/2						Sample No.	-
Soil Description		1	1			Depth Top	12.50 m
Soil Description				·		Depth Base	12.95 m
Samples received 25/01/2022 Schedules received 25/01/2022 Schedu	Coll Description	High strength of	dark grey silty CL/	AY with rare n	nedium pyrite	Sample Type	U
Test Method BS1377 : Part 7 : 1990, clause 8, single specimen Date of test 03/02/2022	Soil Description	nodules an	d traces of decon	nposed shell f	ragments	Samples received	25/01/2022
Test Number						Schedules receive	ed 26/01/2022
Length	Test Method	BS1377 : Part 7 :	1990, clause 8, s	ingle specime	en	Date of test	03/02/2022
Moisture Content Dry Density Rate of Strain Cell Pressure Axial Strain Deviator Stress, (σ1 - σ3) f Undrained Shear Strength, cu Mode of Failure Polyton Stress v Axial Strain Axial Strain Axial Strain Deviator Stress v Axial Strain Deviator stress corrected for area change and membrane effects Deviator stress corrected for area change and membrane effects Deviator stress corrected for area change and membrane effects Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This provided for information only.		/ disturbed	Length Diameter			198.0 103.0	mm
Rate of Strain Cell Pressure Axial Strain Deviator Stress (o1 - o3) f Undrained Shear Strength, cu Mode of Failure Printle Rate of Strain Deviator Stress (o1 - o3) f Undrained Shear Strength, cu Mode of Failure Printle Rate of Strain Deviator Stress (o1 - o3) f Undrained Shear Strength, cu Mode of Failure Printle Printle Rate of Strain Rea Va (o1 - o3) f Rea Va (o1			Moisture Con	ntent		28	%
Peviator Stress v Axial Strain 300 250 200 150 100 250 250 250 250 250 250 250 250 250 2	aldı .		Dry Density			1.55	
Peviator Stress v Axial Strain 300 250 200 150 100 250 250 250 250 250 250 250 250 250 2	sam						
Peviator Stress v Axial Strain 300 250 200 150 100 250 250 250 250 250 250 250 250 250 2	withir		Axial Strain			3.5	%
Peviator Stress v Axial Strain 300 250 200 150 150 250 250 250 250 250 250 250 250 250 2	v lion v						
Peviator Stress v Axial Strain 300 250 200 150 150 250 250 250 250 250 250 250 250 250 2	Posit			_	, cu		KPa ½(01-03)I
250 250 250 250 250 250 250 250 250 250	eviator Stress v A	xial Strain					
## Deviator stress corrected for area change and membrane effects ## Deviator stress corrected for area change and membrane effects ## Mohr Circles ## Deviator stress corrected for area change and membrane effects ## Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.							
Axial Strain % Deviator stress corrected for area change and membrane effects Mohr Circles 150 0 50 100 150 200 250 300 350 400 450 500 550 600	250						
Activation Services The state of the state	2 000		•				
Axial Strain % Deviator stress corrected for area change and membrane effects Mohr Circles 150 0 50 100 150 200 250 300 350 400 450 500 550 600	200						
Axial Strain % Deviator stress corrected for area change and membrane effects Mohr Circles 150 0 50 100 150 200 250 300 350 400 450 500 550 600	150						
Deviator stress corrected for area change and membrane effects Mohr Circles Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.	100						
Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.	50						
0 1 2 3 4 5 6 7 8 9 10 11 12 Rohr Circles 250 200 150 150 100 100 100 100	V						
Deviator stress corrected for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.	0 1 Nohr Circles	2 3	4 5			3 9 1	0 11 12
for area change and membrane effects Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.							Dovintor etrace corrected
Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.	250						for area change and
50 0 50 100 150 200 250 300 350 400 450 500 550 600	200						monipiano onocio
50 0 0 50 100 150 200 250 300 350 400 450 500 550 600	150						
50 0 0 50 100 150 200 250 300 350 400 450 500 550 600							covered by BS1377.
50 0 0 50 100 150 200 250 300 350 400 450 500 550 600	100						
0 50 100 150 200 250 300 350 400 450 500 550 600					+		
0 50 100 150 200 250 300 350 400 450 500 550 600	0						
		100 150 200			00 450	500 550 600)